Application of SEPIC DC-DC converter for low-voltage energy harvesting systems

Tole Sutikno, Rizky Ajie Aprilianto

Abstract


Energy harvesting systems (EHS) have been known as a concept to obtain energy from a clean source and convert it into other energy, including electricity. EHS can be classified into four sources: light, electromagnetic, thermal, and kinetic energy. Unfortunately, most harvester devices generate electricity within the low-voltage level, so voltage conditioning is needed to achieve a feasible level. SEPIC DC-DC converter becomes one of the solutions to realize it, which works by increasing DC level voltage. In this study, the role of SEPIC DC-DC converter for HES applications focusing on three of four sources along with its harvester devices, i.e., light by PV, gradient temperature by TEG, and pressure by a piezoelectric device, are reviewed. Also, the overview of challenges and the possibility of HES obtained are described. Then, the application of each harvester device and the SEPIC DC-DC converter is explained to low-voltage EHS applications, for instance, in renewable energy power plants, street lighting, small-scale power applications, or power sources at wearable devices. Lastly, the primary issue in the SEPIC DC-DC converter and research information that may be carried out in future studies are given.

Full Text:

PDF

References


R.-D. Chang, J. Zuo, Z.-Y. Zhao, G. Zillante, X.-L. Gan, and V. Soebarto, “Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research,” Renew. Sustain. Energy Rev., vol. 72, pp. 48–56, 2017.

G. Saini and M. S. Baghini, “An energy harvesting system for time-varying energy transducers with FOCV based dynamic and adaptive MPPT for 30 nW to 4 mW of input power range,” Microelectronics J., vol. 114, p. 105080, 2021.

T. Sutikno, H. Satrian Purnama, R. A. Aprilianto, A. Jusoh, N. Satya Widodo, and B. Santosa, “Modernisation of DC-DC converter topologies for solar energy harvesting applications: A review,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, p. 1845, Dec. 2022, doi: 10.11591/ijeecs.v28.i3.pp1845-1872.

R. A. Aprilianto, S. Subiyanto, and T. Sutikno, “Modified SEPIC Converter Performance for Grid-connected PV Systems under Various Conditions,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 16, no. 6, p. 2943, Dec. 2018, doi: 10.12928/telkomnika.v16i6.10148.

S. Nahar and M. B. Uddin, “Analysis the performance of interleaved boost converter,” in 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Sep. 2018, vol. 8, pp. 547–551, doi: 10.1109/CEEICT.2018.8628104.

K. S. Tey, S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. T. Oo, and A. Stojcevski, “Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation,” IEEE Trans. Ind. Informatics, vol. 14, no. 10, pp. 4322–4333, 2018.

S. Kalimuthukumar, K. Rajesh, B. Kannapiran, G. Manikandan, and R. Selvameena, “A SEPIC Converter with Adaptive Sliding Mode Control for Grid-Connected Solar PV Systems,” in 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021, pp. 1023–1026.

V. Kumar, S. Ghosh, N. K. S. Naidu, S. Kamal, R. K. Saket, and S. K. Nagar, “A current sensor based adaptive step-size MPPT with SEPIC converter for photovoltaic systems,” IET Renew. Power Gener., vol. 15, no. 5, pp. 1085–1099, 2021, doi: 10.1049/rpg2.12091.

D. S. Sankaralingam, M. S. B. Natarajan, M. Muthusamy, and S. B. Singh, “A novel metaheuristic approach for control of SEPIC converter in a standalone PV system,” Int. J. Power Electron. Drive Syst., vol. 13, no. 2, pp. 1082–1092, 2022, doi: 10.11591/ijpeds.v13.i2.pp1082-1092.

B. N. Abramovich, D. A. Ustinov, and W. J. Abdallah, “Modified proportional integral controller for single ended primary inductance converter,” International Journal of Power Electronics and Drive Systems, vol. 13, no. 2. Institute of Advanced Engineering and Science, pp. 1007–1025, 2022, doi: 10.11591/ijpeds.v13.i2.pp1007-1025.

N. Jaswanth and G. R. Dheep, “Performance evaluation of thermoelectric generator employing SEPIC converter and incremental conductance maximum power point tracking for electric vehicles,” in Journal of Physics: Conference Series, 2022, vol. 2327, no. 1, p. 12005.

S. Poluthai and N. Jirasuwankul, “Simulation of a Miniature SEPIC Converter with PI Controller for Thermoelectric Generator Module,” in 2018 International Electrical Engineering Congress (iEECON), 2018, pp. 1–4.

H. Y. Yong, N. I. Rusli, and M. F. N. Tajuddin, “Output voltage control of dual input single ended primary inductor converter (SEPIC) for hybrid photovoltaic-piezoelectric system,” in 2017 IEEE Conference on Energy Conversion (CENCON), 2017, pp. 349–354.

N. A. Kong, D. S. Ha, A. Erturk, and D. J. Inman, “Resistive impedance matching circuit for piezoelectric energy harvesting,” J. Intell. Mater. Syst. Struct., vol. 21, no. 13, pp. 1293–1302, 2010.

I. D. Kim, J. Y. Kim, E. C. Nho, and H. G. Kim, “Analysis and design of a soft-switched PWM Sepic DC-DC converter,” J. Power Electron., vol. 10, no. 5, pp. 461–467, Sep. 2010, doi: 10.6113/JPE.2010.10.5.461.

R. A. Aprilianto, E. Firmansyah, and F. D. Wijaya, “Review on Control Strategy for Improving the Interleaved Converter Performances,” in 2021 4th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2021, 2021, pp. 312–317, doi: 10.1109/ISRITI54043.2021.9702804.

R. M. Ariefianto, R. A. Aprilianto, H. Suryoatmojo, and S. Suwito, “Design and Implementation of Z-Source Inverter by Simple Boost Control Technique for Laboratory Scale Micro-Hydro Power Plant Application,” J. Tek. Elektro, vol. 13, no. 2, pp. 62–70, Dec. 2021, doi: 10.15294/jte.v13i2.31884.

T. Sutikno, H. S. Purnama, N. S. Widodo, S. Padmanaban, and M. R. Sahid, “A review on non-isolated low-power DC–DC converter topologies with high output gain for solar photovoltaic system applications,” Clean Energy, vol. 6, no. 4, pp. 557–572, Aug. 2022, doi: 10.1093/ce/zkac037.

A. El Fathi and A. Outzourhit, “Technico-economic assessment of a lead-acid battery bank for standalone photovoltaic power plant,” J. Energy Storage, vol. 19, no. February, pp. 185–191, Oct. 2018, doi: 10.1016/j.est.2018.07.019.

S. Bhuvana, H. Prathiksha, V. T. Sindhu, and H. Vasudha, “Design and analysis of piezoelectric cantilever based vibration sensor,” in 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), 2018, pp. 1–6.

E. Maghsoudi Nia, N. A. Wan Abdullah Zawawi, and B. S. Mahinder Singh, “Design of a pavement using piezoelectric materials,” Materwiss. Werksttech., vol. 50, no. 3, pp. 320–328, 2019.

R. M. Ariefianto, Y. S. Hadiwidodo, and S. Rahmawati, “Experimental Study of a Wave Energy Converter Using a Unidirectional Cascaded Gear System in a Short-Wave Period,” Int. J. Technol., vol. 13, no. 2, p. 321, Apr. 2022, doi: 10.14716/ijtech.v13i2.5071.

T. Sutikno, S. H. Wahid, R. A. Aprilianto, A. C. Subrata, and A. Jidin, “An Automatic Wind Turbine Braking System on PLTH Bayu Baru through a Fuzzy Logic Controller,” J. Nas. Tek. Elektro, vol. 11, no. 1, pp. 1–7, 2022, doi: 10.25077/jnte.v11n1.887.2022.

H. Liu, H. Fu, L. Sun, C. Lee, and E. M. Yeatman, “Hybrid energy harvesting technology: From materials, structural design, system integration to applications,” Renew. Sustain. Energy Rev., vol. 137, no. October, p. 110473, 2021, doi: 10.1016/j.rser.2020.110473.

X. Xing, Y. Xin, F. Sun, W. Qu, H. Hong, and H. Jin, “Test of a spectral splitting prototype hybridizing photovoltaic and solar syngas power generation,” Appl. Energy, vol. 304, p.

R. D. Bhagiya and R. M. Patel, “PWM based Double loop PI Control of a Bidirectional DC-DC Converter in a Standalone PV/Battery DC Power System,” in 2019 IEEE 16th India Council International Conference (INDICON), Dec. 2019, pp. 1–4, doi: 10.1109/INDICON47234.2019.9028974.

R. Das, S. De, S. Sinha, and S. Hazra, “Modelling of PV based DC-DC boost converter using P&O algorithm under varying environmental conditions,” in 2021 Innovations in Energy Management and Renewable Resources (52042), 2021, pp. 1–5.

M. Alam, K. Kumar, and V. Dutta, “Dynamic modeling and experimental analysis of waste heat recovery from the proton exchange membrane fuel cell using thermoelectric generator,” Therm. Sci. Eng. Prog., vol. 19, no. August 2019, p. 100627, 2020, doi: 10.1016/j.tsep.2020.100627.

R. A. Aprilianto and R. M. Ariefianto, “The Utilization of Waste Heat From Polymeric Electrolyte Membrane Fuel Cells (PEMFC) Using Thermoelectric Generator (TEG): A Review,” J. Sustain. Energy, vol. 12, no. 2, pp. 60–65, 2021.

W. J. Zou, K. Y. Shen, S. Jung, and Y. B. Kim, “Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system,” Energy, vol. 229, 2021, doi: 10.1016/j.energy.2021.120698.

C. T. Hsu, G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao, “Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators,” Appl. Energy, vol. 88, no. 4, pp. 1291–1297, 2011, doi: 10.1016/j.apenergy.2010.10.005.

B. Abderezzak and S. Randi, “Experimental investigation of waste heat recovery potential from car radiator with thermoelectric generator,” Therm. Sci. Eng. Prog., vol. 20, p. 100686, 2020.

J. Kim et al., “Dynamic reconfiguration of thermoelectric generators for vehicle radiators energy harvesting under location-dependent temperature variations,” IEEE Trans. Very Large Scale Integr. Syst., vol. 26, no. 7, pp. 1241–1253, 2018.

H. Yang et al., “Prediction-based fast thermoelectric generator reconfiguration for energy harvesting from vehicle radiators,” in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018, pp. 877–880.

G. J. Song et al., “Performance of a speed bump piezoelectric energy harvester for an automatic cellphone charging system,” Appl. Energy, vol. 247, pp. 221–227, 2019.

J. H. Hyun, N. Chen, and D. S. Ha, “Energy Harvesting Circuit for Road Speed Bumps Using a Piezoelectric Cantilever,” in IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, 2018, pp. 4219–4223.

E. Ekawati, R. Y. Mardiah, and H. Parmana, “Speed bump with piezoelectric cantilever system as electrical energy harvester,” in 2016 International Conference on Instrumentation, Control and Automation (ICA), 2016, pp. 154–159.

M. Logeshwaran, J. J. J. Sheela, and A. P. Priya, “A High-Efficiency Power Generator by Footsteps Using Piezoelectric Effect,” in 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), 2022, pp. 1547–1553.

D. Singh, J. Alam, S. Alam, and L. Varshney, “Performance Analysis of Footstep Power Generation using Piezoelectric Sensors,” in 2021 International Conference on Intelligent Technologies (CONIT), 2021, pp. 1–5.

A. Kamboj, A. Haque, A. Kumar, V. K. Sharma, and A. Kumar, “Design of footstep power generator using piezoelectric sensors,” in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–3.

M. Vaigundamoorthi, R. Ramesh, V. V Prabhu, and K. A. Kumar, “MPPT oscillations minimization in PV system by controlling non-linear dynamics in SEPIC DC-DC converter,” International Journal of Electrical and Computer Engineering, vol. 10, no. 6. Institute of Advanced Engineering and Science, pp. 6268–6275, 2020, doi: 10.11591/IJECE.V10I6.PP6268-6275.

E. Mamarelis, G. Petrone, and G. Spagnuolo, “Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3387–3398, Jul. 2014, doi: 10.1109/TIE.2013.2279361.

A. J. Sabzali, E. H. Ismail, and H. M. Behbehani, “High voltage step-up integrated double Boost-Sepic DC-DC converter for fuel-cell and photovoltaic applications,” Renew. Energy, vol. 82, pp. 44–53, 2015, doi: 10.1016/j.renene.2014.08.034.

A. Ghasemi, S. Fazlollohzadeh Eilaghi, and E. Adib, “A new non-isolated high step-up SEPIC converter for photovoltaic applications,” in 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), Feb. 2012, pp. 51–56, doi: 10.1109/PEDSTC.2012.6183383.

A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and Design of High-Efficiency Hybrid High Step-Up DC–DC Converter for Distributed PV Generation Systems,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3860–3868, May 2019, doi: 10.1109/TIE.2018.2840496.

D. E. Schwartz, “A maximum-power-point-tracking control system for thermoelectric generators,” in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2012, pp. 78–81.

N. Phillip et al., “Modelling and simulation of a thermoelectric generator for waste heat energy recovery in low carbon vehicles,” in 2012 2nd International Symposium On Environment Friendly Energies And Applications, 2012, pp. 94–99.

T. H. Kwan and X. Wu, “The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system,” Appl. Energy, vol. 204, pp. 873–886, 2017.

J. A. B. Vieira and A. M. Mota, “Thermoelectric generator using water gas heater energy for battery charging,” in 2009 IEEE Control Applications,(CCA) & Intelligent Control,(ISIC), 2009, pp. 1477–1482.

C. E. Kinsella, S. M. O’Shaughnessy, M. J. Deasy, M. Duffy, and A. J. Robinson, “Battery charging considerations in small scale electricity generation from a thermoelectric module,” Appl. Energy, vol. 114, pp. 80–90, 2014.

N. Nakahigashi and H. Yamada, “SEPIC-based Vibration Power Generation System With Variable Equivalent Resistance Control,” in 2021 24th International Conference on Electrical Machines and Systems (ICEMS), 2021, pp. 192–196.

N. Nakahigashi and H. Yamada, “Vibration Power Generation System Using a Piezoelectric Element with a Variable Resistance Control for Optimal Generated Power,” in 2022 International Power Electronics Conference (IPEC-Himeji 2022-ECCE Asia), 2022, pp. 906–910.

R. Gules, W. M. dos Santos, F. A. dos Reis, E. F. R. Romaneli, and A. A. Badin, “A Modified SEPIC Converter With High Static Gain for Renewable Applications,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5860–5871, Nov. 2014, doi: 10.1109/TPEL.2013.2296053.

S. Saravanan and N. Ramesh Babu, “Analysis and implementation of high step-up DC-DC converter for PV based grid application,” Appl. Energy, vol. 190, pp. 64–72, Mar. 2017, doi: 10.1016/j.apenergy.2016.12.094.

S. Saravanan and N. R. Babu, “A modified high step-up non-isolated DC-DC converter for PV application,” J. Appl. Res. Technol., vol. 15, no. 3, pp. 242–249, Jun. 2017, doi: 10.1016/j.jart.2016.12.008.

S. Saravanan and N. R. Babu, “Design and Development of Single Switch High Step-Up DC-DC Converter,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 6777, no. c, 2017, doi: 10.1109/JESTPE.2017.2739819.


Refbacks

  • There are currently no refbacks.