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Wireless sensor networks (WSNs) are widely applied in monitoring and
communication but remain constrained by limited energy resources.
Efficient routing protocols are critical to prolong network lifetime and
ensure balanced energy consumption among sensor nodes. Traditional
cluster-based routing often fails to achieve optimal energy balance, leading
to premature node failures and degraded performance. Intelligent
optimization algorithms, including meta heuristics such as particle swarm
optimization (PSO) and emperor penguin optimization (EPO), have been
applied to improve routing efficiency. These methods enhance convergence
and adaptability but typically operate as standalone approaches. Limited
attention has been given to integrating multi criteria decision making
(MCDM) methods with meta heuristics. Without this integration, assigning
precise weights to multiple criteria and balancing energy consumption across
nodes remains difficult. This paper proposes a novel uneven cluster-based
routing protocol that integrates fuzzy constrained nonlinear programming-
variable weight analysis-technique for order preference by similarity to ideal
solution (FCNP-VWA-TOPSIS) with an improved EPO. The protocol first
assigns accurate weights to seven multi criteria using FCNP VWA and
selects cluster heads (CHs) with TOPSIS. It then constructs the routing tree
using improved EPO guided by the weighted fitness function. Extensive
simulations show that the proposed protocol achieves superior energy
balance, extending network lifetime by 158.0%, 119.3%, and 113.7%
compared to uneven clustering routing (UCR), unequal clustering fuzzy
logic intelligent algorithm (UCFIA), and fuzzy multi-criteria clustering and
bio-inspired energy-efficient routing (FMCB ER), respectively. By
combining MCDM and meta heuristic optimization, the protocol advances
cluster-based routing in WSNs, significantly enhancing energy efficiency
and reliability for real world applications.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Jin Sim Kim

International Technology Corporation Center, Kim Chaek University of Technology
60 Kyogu, Sungri Street, Pyongyang, Democratic People’s Republic of Korea

Email: kjs8921@star-co.net.kp

ABBREVIATIONS

ACO Ant colony optimization
ASO Atomic search optimization
AHP Analytic hierarchy process
BS Base station
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CH Cluster head

CM Cluster member

ELECTRE ELimination et choice translating reality

EPO Emperor penguin optimization

FAHP Fuzzy analytic hierarchy process

FMCB-ER Fuzzy multi-criteria clustering and bio-inspired energy-efficient routing
FNCP Fuzzy cognitive network processing

FVT-EPO-UCR FCNP-VWA-TOPSIS-EPO-based uneven clustering routing
GA Genetic algirithm

IoT Internet of things

MCDM Multi-criteria decision making

NEC Network energy consumption

PROMETHEE Preference ranking organization method for enrichment evaluation
PSO Particle swarm optimization

QoS Quality of service

REV Residual energy variation

SDPR Successfully delivered packet rate

SN Sensor node

SSO Shark smell optimization

TOPSIS Technique for order preference by similarity to ideal solution
UCFIA Unequal clustering fuzzy logic intelligent algorithm

UCR Unequal clustering-based routing

UWSN Underwater wireless sensor networks

VIKOR Vlsekriterijumska optimizacija i kompromisno resenje

VWA Variable weight analysis

WSN Wireless sensor network

WRSN Wireless rechargeable sensor network

1. INTRODUCTION

A number of routing protocols have been developed and used for different applications so far. Now,
among various routing protocols, a cluster-based routing protocol is the most attractive for energy-efficient
utilization [1]-[7]. The energy-constrained wireless sensor networks (WSNs) are composed of a number of
sensor nodes discriminated by mutually contradictory multi-criteria. Considering these characteristics of
WSNs, there has been a growing interest in recent research on the application of intelligent optimization
methods such as fuzzy logic or multi-criteria decision making (MCDM) and meta-heuristic algorithm to
cluster-based routing [4]. There are several such protocols, including fuzzy logic-based [8], individual
MCDM-based such as analytic hierarchy process (AHP) [9], visekriterijumska optimizacija i kompromisno
resenje (VIKOR) [10], elimination et choice translating reality (ELECTRE) [11], technique for order
preference by similarity to ideal solution (TOPSIS) [12], preference ranking organization method for
enrichment evaluation (PROMETHEE) [13], the combination of intelligent optimization algorithms such as
fuzzy logic, and ant colony optimization (ACO) [14]. Meanwhile, recently, the research results of improving
further the charging performance by introducing an integrated MCDM methods such as (AHP-TOPSIS) [15],
fuzzy analytic hierarchy process-variable weight analysis (FAHP-VWA-TOPSIS) [16], FAHP-VWA-Q-
Learning [17], fuzzy constrained nonlinear programming (FCNP-TOPSIS) [18], and FCNP-Q-learning [19]
to charging scheduling of WRSNs have been reported.

Clustering routing is usually performed by two phases, i.e., the cluster-route establishment phase
and the data gathering phase. In the cluster-route establishment phase, the cluster head (CH) node is selected
and the cluster member (CM) nodes are enlisted to the selected CH nodes to form clusters, and next hop CH
nodes for relay data transmission between CH nodes are also selected to construct the routing tree. In the data
gathering phase, the sensed data is transmitted through the constructed tree to base station (BS). The
optimization goal of cluster-based routing is to maximize network lifetime by balancing the energy
consumption between sensor nodes as much as possible while maintaining network stability, reliability and
connectivity. Existing cluster-based routing protocols have mainly focused on using individual MCDM
methods in the CH node selection of clustering phase.

What kind of intelligent optimization method is used to blend multi-criteria and what intelligent
optimization methods are integrated are challenges to be addressed. However, so far, the researchers have not
worked on combining MCDM methods with meta-heuristic algorithms so that energy consumption balance
can maximally be provided in the cluster-route establishment phase. Research by Mao and Zhao [14], a
protocol was proposed, which performs an uneven clustering with fuzzy logic and constructs a routing tree to
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BS using max-min ACO. This protocol has the disadvantage of using only 3 criteria such as residual energy

(RE), distance to BS and node neighboring degree (NND) as multi-criteria in fuzzy logic-based clustering. In

addition, max-min ACO is not superior to other meta-heuristic algorithm such as emperor penguin

optimization (EPO). Mehta and Saxena [20], a grid-based clustering scheme was proposed, which assigns the
weights to multi-criteria by FAHP, selects CH nodes within the grid by TOPSIS, and uses the EPO to
construct the routing tree from CH nodes to BS. However, this scheme can overestimate the actual pairwise
difference between criteria in weight assignment due to the use of FAHP of the pairwise ratio scale.

Furthermore, it doesn’t take into account the weight compensation to avoid the loss of resolution in weight

evaluation when the weights of criteria have approximate values.

Fuzzy cognitive network processing (FNCP) is a MCDM method that uses fuzzy pairwise interval
scale to solve the problem of uncertain importance evaluation arising from FAHP using fuzzy pairwise ratio
scale [21]. FCNP, an ideal alternative to FAHP, can provide very reliable decision support compared to
FAHP [22]. On the other hand, VWA is a method to adapt previously assigned weights based on state
variable weight vectors [23], [24]. TOPSIS is a MCDM for selecting the alternatives and most commonly
used in combination with other MCDM for weight allocation. We complete clustering in such a way that uses
an integrated FCNP-VWA-TOPSIS. Here; i) FCNP first assigns to multi-criteria, ii) VWA compensates the
weights of multi-criteria assigned by FCNP, and iii) TOPSIS selects the CH node and enlists CM nodes to
the CH node with the compensated weights, thus the better energy consumption balance can be obtained in
clustering.

On the other hand, the superiority of EPO over other meta-heuristic algorithms such as PSO and
ACO has been demonstrated in several applied studies [20], [25]. A systematic review of the EPO, a recently
developed meta-heuristic algorithm to solve a general optimization problem, was carried out in [26]. The
main feature of EPO is that this method is based on a simple imitation of the huddling behavior of natural
emperor penguins and provides a simple, straightforward implementation. In EPO, the emperor penguins
represent candidate solutions, the clusters represent search spaces that constitute a two-dimensional L-shaped
polygon plane, and the positions of emperor penguins represent feasible solutions. The focus of all the
emperor penguins is to place an efficient mover representing the global optimal solution. Recently, EPO has
been actively applied to address the optimization problem arising in many application fields.

The main objective of this work is to develop an uneven cluster-based routing protocol which can
maximize the network lifetime. This goal is achieved by combining an integrated FCNP-VWA-TOPSIS and
EPO to maximally provide the balanced and efficient utilization of the limited energy of all sensor nodes in
the cluster-route establishment phase for WSNs. Here, uneven clustering refers to having CH nodes near BS
with smaller clusters to alleviate the hot spot problem, which is caused because the closer to BS nodes are,
the more relay burden of sensed data they receive [27]. The main contributions of this study are as follows:

— To our knowledge, this work is the first to exploit two integrated methods, FCNP-VWA-TOPSIS and
FCNP-VWA-EPO, in the cluster-route establishment phase of uneven cluster-based routing protocol for
WSNs.

— We propose an integrated FCNP-VWA-TOPSIS-based clustering method that achieves the optimum
energy consumption balance, where TOPSIS selects the best optimal CH node and enlists CM nodes to
the most appropriate CH node based on the correct weights allocated to the multi-criteria by FCNP-
VWA.

— A routing tree construction method that optimally balances the energy consumption in the data gathering
phase is proposed, which selects the next hop CH node most suitable for relay data transmission by the
improved EPO using the weights of multi-criteria assigned by FCNP-VWA.

— Extensive experiment results have shown that the proposed protocol has much better performance than
other existing protocols.

The rest of this paper is organized as follows. In section 2, the related works are discussed, and the
network model and the energy consumption model is described in section 3. In section 4, the proposed
protocol is described. The results of the extensive simulations and the analysis of them are presented in
section 5 and this paper is concluded in section 6.

2. RELATED WORKS

In this section, we briefly review previous works on routing protocols using intelligent optimization
algorithms among a number of cluster-based routing protocols. Baradaran and Navi [8], proposed the
clustering method by selecting the optimal CH node in fuzzy logic using multi-criteria such as RE, minimum
and maximum distance between nodes in each cluster, and minimum and maximum distances between nodes
in each cluster and BS. A fuzzy logic-based two-level clustering and contents-based routing scheme was
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proposed in [28]. This scheme divides the whole network area into two levels to perform clustering and
performs two routing processes according to the amount of data.

Lekhraj et al. [10] selected the CH node by VIKOR to perform clustering using seven multi-criteria
such as CH node coverage, power, connectivity between BS and CH node, distance between BS and CH
node, distances between CH node and sensor nodes, RE of node and node power. Janakiraman et al. [11]
proposed a scheme to select a CH node with ELECTR-I using multi-criteria such as the number of times a
node is selected as a CH node, the distance between node and CH node, the distances between neighboring
nodes, and the energy level. A scheme to select CH node by TOPSIS using multi-criteria such as RE, number
of neighbors, distance from BS, average distance (ADis) of CM nodes, distance ratio, and reliability is
proposed by Sen et al. [12]. Rajpoot and Dwivedi [13], proposed the clustering scheme using individual
MCDMs such as AHP, TOPSIS, and PROMETHEE with 16 mutually contradictory multi-criteria to provide
the balance of load and energy consumption in clustering. In this scheme, 16 multi-criteria were chosen
considering only the distance and energy factors by and large.

Hatamian et al. [29], proposed a centralized genetic-based clustering (CGC) scheme using onion
method. This scheme uses genetic algirithm (GA) for choosing CH nodes and onion method for reducing the
communication overhead between CH nodes in establishing the routes from CH nodes to BS. A scheme to
construct a routing tree by performing an uneven clustering with fuzzy logic using three multi-criteria such as
RE of nodes, distance to BS, and neighboring degree of nodes, and determining the appropriate next hop CH
node using max-min ACO was proposed in [14]. Mehta and Saxena [20] proposed a grid-based clustering
scheme to select a CH node with FAHP-TOPSIS by using multi-criteria of three broad parameters such as
energy, QoS and distance, which have six sub-criteria, respectively. After completing clustering, the EPO
was used to construct the route to BS in cluster-route establishment phase. Sreedharan and Pete [30], the
authors proposed a scheme which selects the optimal CH node using the generalized intuitionistic fuzzy soft
set (GIFSS) method and constructs the routing tree using the shark smell optimization (SSO) and genetic
algorithm.

An enhanced flower pollination algorithm (FPA) based on the EPO was proposed to diagnose faults
and extend network lifetime [31]. In this scheme, the optimal EPO (OEPO) algorithm was used to obtain
automatic identification of the behavior of active sensor nodes, an alternative solution for repair of failed
nodes and optimal routing. The enhanced FPA extends the stability period of the network by implementing
load balancing and minimization of energy consumption of CH nodes in multi-hop communication between
CH nodes and BS.

An opportunistic routing scheme using the EPO and Q-learning (EPO-Q) method was proposed for
underwater wireless sensor networks (UWSNs) [32]. Void-hole generation and redundant packet
transmission from sensor nodes to BS increase energy consumption and reduce the lifetime of UWSN.
Therefore, this scheme avoids the void-hole problem and reduces energy dissipation by EPO-Q method. A
hybrid EPO scheme was developed in [33] to solve three problems: load balancing, security enhancement,
and energy consumption reduction. Combining the atomic search optimization (ASO) into hybrid EPO
improves the updating function of EPO. Three main objective functions are considered to improve the
performance of WSNs, such as load balancing, security enhancement, and energy consumption reduction. A
bi-layered WSN architecture consisting of four steps: cluster formation, CH node selection, coverage hole
detection and recovery, and routing was proposed in [34]. Using the K-means algorithm, it forms clusters and
chooses a CH node by determined weight (DW). After clustering, it performs detection and recovery of
coverage hole using fuzzy logic and uses multi-objective EPO (MO-EPO) algorithm for the best multi-hop
route establishment. A maximum power point tracking (MPPT)-EPO based solar energy harvesting (EH)
method was proposed for EH-WSN to maximize WSN network lifetime [35]. Using the energy efficient
technique of the EPO algorithm, it optimizes the MPPT to track the optimal power from the solar panel.
Thangaramya et al. [36] proposed a cluster formation and routing method based on neuro-fuzzy rule to
improve the performance of WSN for IoT. For IoT using fog and cloud computing, an overlapping clustering
scheme was proposed in [37]. This scheme chooses the best CH nodes to send the collected data to the
closest fog nodes, which transmit the data to the cloud servers. It can be seen that the above considered
routing protocols mainly use fuzzy logic or individual MCDM for clustering accompanied by CH node
selection, and intelligent optimization methods such as ACO, EPO, and SSO for routing tree construction.

In making a summary on the issues of existing intelligent optimization-based routing protocols for
WSNss, it is as follows. First, most of existing protocols using MCDM methods such as AHP or FAHP
assigns the weights to multi-criteria using the pairwise ratio scale, thus magnifying the actual pairwise
difference between multi-criteria. In addition, most of existing protocols using meta-heuristic algorithms such
as GA, ACO, ASO, and EPO, assign equal weights to multi-criteria or cause uncertainty of subjective
perception due to man-made unequal weighting in calculating fitness values. Finally, in constructing the
routing tree, there has been no report on application of integrating MCDM methods with meta-heuristic
algorithms. In this paper, we propose an uneven cluster-based routing protocol that uses an integrated FCNP-
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VWA-TOPSIS to perform clustering, and EPO to construct a routing tree using the weights of multi-criteria
assigned by FCNP-VWA.

3. SYSTEM MODEL
3.1. Network model
The assumptions for developing an uneven cluster-based routing protocol using the integrated

MCDM and EPO are as follows:

— The network consists of N static sensor nodes randomly deployed in the square area of LXL, and an
energy-constrained fixed BS located far away from the monitoring area.

— All sensor nodes have a limited capacity of unchangeable battery and unique ID, and they are
heterogeneous and not aware of their location information.

— Sensor nodes can adjust their transmission power according to the distance between themselves and the
receiver.

3.2. Energy expenditure model
We adopt the simple model proposed in [38] as an energy consumption model. The energy
consumed to transmit the k bits data is calculated by (1).

k X Egec +k X grs x d* d < d,

1
k X Eglec + k X &y X d*d = d, 0

Ery(k,d) = {

where &¢; and &, are the propagation loss coefficient, E,, is the energy consumed for transmitting one bit
data, and d is the transmission distance. In the equation, the power of d is determined by the transmission
distance and the threshold distance dy = |/ &¢sS/&mpr=87.7 m.

The energy consumed for the reception of the & bits data is calculated using (2):

ERx (k) =k X Eelec (2)

We assume that relay nodes do not aggregate incoming packets and only CH nodes collect data.
Thus, when the energy consumed for the data aggregation is called Epa, the total energy consumption of the
CH node is expressed as (3):

Etotar = Erx(k,d) + Egy (k) + Ep4 3

4. PROPOSED PROTOCOL

The proposed protocol operates in two separate phases: cluster-route establishment phase and data
gathering phase. The cluster-route establishment phase consists of clustering step in order to select the CH
nodes and enlist CM nodes to the most appropriate CH nodes, and the routing tree construction step to
establish the route to BS by selecting the next hop CH node for each single CH node. The clustering step uses
an integrated FAHP-VWA-TOPSIS, while the routing tree construction step uses the improved EPO. In the
data gathering phase, the data sensed in the whole network area are transmitted to BS through the routing
tree. Figure 1 shows the systematic overview of the proposed protocol.

4.1. Cluster-route establishment

In this phase, BS first assigns the weights of multi-criteria characterizing the sensor nodes by
FAHP-VWA and then notifies them the entire nodes in the network. The nodes within the network use these
weights to form uneven and hierarchical clusters with TOPSIS in a distributed manner. As soon as clustering
is completed, the CH nodes construct the routing tree by optimally determining the next hop CH node for
relay data transmission using EPO.

4.1.1. Weighting of multi-criteria

In the weighting method by FCNP-VWA, node i is characterized using seven multi-criteria, such as
RE, energy consumption rate (ECR), distance to BS (Dis), ADis to neighbors, NND, signal-to-noise ratio of
link (SNR) and node location importance degree (NLID) [39]. The definitions of these criteria are as follows:
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RE: this criterion is critical one in cluster-route establishment as it is one of the most important
criteria characterizing the energy status of each sensor node. Once deployed within the network, sensor nodes
get to know their RE by monitoring them.

ECR: this criterion, which represents the RE change over a certain time period, is also an important
one that reflects the energy consumption status of each node. Due to the uneven traffic load on each node, the
ECR varies with time, so it should be able to measure this criterion in a real-time way. In this paper, the ECR
for each node is calculated according to [40].

ECR;(n-1)XTS(n—1)+ecr;(n)t(n)
TS(n—1)+t(n)

ECR(1) = ecry(1) = 22580

ECR;(n) =

“4)

where, ECR;(n) is the ECR in the n™ measurement interval of node i, 4 -the RE measurement interval,
TS(n — 1) -the sum of the total time to the (n-1)" measurement interval, ecr;(n) -the real-time ECR in the
n™ measurement interval of node i, and E/®*(0) -the RE in the 0" measurement interval, i.e., the energy
capacity of node i.

Distance to BS (Dis): it is calculated by the Euclidean distance between nodes i(x;,y;) and
BS(xgs, ¥gs) denoted as (5):

dips = /(i — xps)? + (Vi — ¥s)? Q)

ADis to neighbors: it means the average of the distance to all neighbors within the communication

radius of node i. The smaller D¢/ is, the larger power is consumed in communication between nodes.

i

X;L.Dij ...
paver — %i]’(l # ) (6)

inei

Here, n; denotes the number of neighbors within the communication radius of node i, while D; ; denotes the
distance between node 7 and its neighbor j.

NND: this criterion is used for identifying the number of neighbors within the communication radius
of node 7, which is expressed as (7):

NND; — Mmax-Ti (7

Nmax

Here, n; denotes the number of neighbors within the communication radius of node 7, while n,,,, denotes the
maximum number of neighbors within the communication radius at the location of any nodes in the network.
The SNR of link: the signal-to-noise ratio of link of node i is calculated by (8) [41]:

Psignal
SNR; =10 log10(+more) (®)
L
where P9" and PI°¢ denote the effective signal power and the effective noise power of node i,
respectively.

NLID: this criterion reflects the importance degree of each grid when the whole monitoring area of
the network is divided into a number of discrete grids [39]. The importance of the grid is defined as advent
frequency of the monitoring object occurring within the grid. In the network with n sensor nodes, the location
importance degree of node i NLID;(t) is expressed as (9):

NLID;(t) = min{C x w;(t) X N/¢, 1} )

Here, w; is the weight of Voronoi region of the grid g;;, and ¢ is the total amount of maximum surveillance
efficiency of each grid, respectively, expressed as (10) and (11):

wi(t) = Xg, e, i (1) (10)
¢ = Xg,ep max(¢y;(t)) (11)
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In the equations, ¢;;(t) = 1 — e “J[1 — ¢;;(t — 1)] (here, a;; is the importance degree of the grid g;;) is
the surveillance efficiency of the grid g;;. C is a perspective factor (C € [0,10]) that takes into account the
influence of environmental changes such as topology, node failure, and the wrong prior knowledge of each
grid, and it is expressed as (12) using the frequency detected during the time period t.

C=10x (> (12)

The location importance degree of each node is determined for each node in advance. Weighting to the above
considered criteria is proceeded by FCNP-VWA.

FCNP is a method to assign weights to multi-criteria using fuzzy numbers such as triangular fuzzy
numbers on fuzzy pairwise interval scales. A fuzzy pairwise interval scale-based fuzzy pairwise opposite
matrix (FPOM) is constructed using triangular fuzzy numbers. The fuzzy accordance index (Al) for FPOM is
verified. From the consistency-verified FPOM, the vector of fuzzy individual utility is obtained from the
fuzzy primitive least squares (FPLS) optimization model, and then normalized to obtain the fuzzy weight
vector of the criteria. An overview of weighting multi-criteria by FCNP is in [17], [18].

VWA is a weight compensation method that automatically emphasizes or weakens the weights
assigned by FCNP according to their importance degree using a state variable weight vector. In FCNP, unlike
in FAHP, the exponent type state variable weight vector with penalty is used. In FAHP using the pairwise
ratio scale, the exponent type state variable weight vector with incentive is used to increase the criterion’s
weight as the state value increases. However, the exponent type state variable weight vector with penalty
increases the criterion’s weight as the state value decreases. In other words, the criterion balancing
requirement of decision making is realized by penalizing the low-level criteria. A review of VWA is
described in [42], [43].

The fuzzy pairwise opposite matrix for determining the relative weights of the multi-criteria
considered above is shown in Table 1. The accordance verification result for this fuzzy pairwise opposite
matrix is Al = 0.0893. Since 0 < Al < 0.1, so the consistency is satisfied. The normalized weights assigned
to each criterion by FCNP and the compensated weights by VWA in case that the value of the state variable
vector a was set to 0.75 are shown in Table 2.

| Multi-criteria weights calculation

Cluster-route establishment

Construct

H fuzzy pairwise opposite matrix i Broadcast 7 multi-criteria weights at BS

Check fuzzy accordance index - - .V O
] { Exchange local information i
T S —— 1 Data gathering

3Obmin vectors of fuzzy individual mih‘ry§ Assign time slots to CM nodes in each clusteri

and calculate fuzzy weight vectors Choose CH nodes by TOPSIS

1 Use exponent type state |
variable weight vector with penalty
VWA

Establish routes from CH nodes to BS
with improved EPO

|| Integrated FONP-YWAEPO 1

O 2 ‘ 1::> Gather sensed data from CM nodes
i Obtain crisp weights ' Join CM nodes to CH nodes by TOPSIS - tOCH fl,o,def S
Ty T T A

Transter collected data of CH nodes to BS

Figure 1. Overview of the proposed protocol

Table 1. The fuzzy pairwise opposite matrix between criteria

Evaluation criteria  RE  ECR  Dis ADis NND SNR LNID
RE 0 3" 0 4+ 4* 6" 6"
ECR 3 0 3 2" 2" 3" 3*
Dis 0 3* 0 4" 4* 6" 6"
ADis 4 2 5 0 0 4+ 4*
NND 4 2° 5 0 0 4% 4*
SNR 6 3 6 4 4 0 2"
LNID 6 3 6 4 4 2 0
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Table 2. Compensated weight of evaluation criteria
Criteria  Weight (w;)  Compensated weight (w;)

RE 0.1845 0.1898
ECR 0.1480 0.1351
Dis 0.1845 0.1965
ADis 0.1390 0.1502
NND 0.1390 0.1105
SNR 0.1048 0.1089
LNID 0.1002 0.1090

4.1.2. Cluster formation

At the beginning of the protocol, BS begins clustering by broadcasting BS start Msg (wy, ..., w,,
aii™, d{f}-in) in the whole network to notify all sensor nodes the weights of multi-criteria. All the nodes
which have received this message get to know the distance to BS using the Received Signal Strength
Intensity (RSSI).

At the beginning of each round of this protocol, all the nodes exchange their local information to
select the CH node by broadcasting Hello_Msg (i, E[*, d; gs, ECR;, NLID;, R;°"""°).

In this message, i denotes the ID of node i, d; zs-the distance between node i and BS, E]**-the RE of
node i, and NLID;-the location importance degree of node i. Ric o™P€ denotes the competition radius of node i
and is calculated using (13):

compe alt % —d; gs
_ ij , max
Ri - (1 —vX d;r’njax_d;r’njin) X Ri (13)

where y takes the value of the interval [0,1] as a constant coefficient, and R, is the predefined maximum
competitive radius.

Through the exchange of Hello Msg(+), the nodes get to know the neighboring degree NND; of
themselves and calculate the ADis to the neighbors D{/¢/ and the signal to noise ratio SNR;. As soon as the
nodes gather local information, they proceed the data dimension normalization of their quantitative criteria’
values in the same way as in [9].

When we call the set of nodes V, the normalization of the evaluation value (¥;;) of the criterion j of

the node i is proceeded as (14):

L) TN i=TH

i=LN;j=1M (14)

Xij =1 - 1 >
T Iy ZkevCrj—g Diev T)AM?

When the exchange of nodes’ local information is completed, each node initiates the CH competition. At this
time, each node uses an integrated FCNP-VWA-TOPSIS to select the CH node and enlist CM nodes into the
CH node. To do this, first, a decision matrix which will be used in TOPSIS is constructed.

When a sensor node receives Hello Msg(+) messages from five neighboring nodes, an example of
the normalized six criteria’ values for a total of six sensor nodes including itself is shown in Table 3.

The decision matrix to be used in TOPSIS is shown in Table 4. The sensor nodes with high E/®*,
short D; gs, low ECR;, high NND;, short D¢, high SNR;, and low NLID; are selected as a CH node with
higher probability.

Then the upper bound (positive ideal solution) and the lower bound (negative ideal solution) of the
solutions are calculated as in Table 5. The separations between the upper bound and the lower bound are
calculated, and the relative closeness to the upper bound is calculated for each sensor node then based them,
the priority is determined as shown in Table 6.

Table 3. Criteria values of sensor nodes
Evaluation criteria RE ECR Dis ADis NND SNR LNID

SN1 1.6565 3.1854 0.8730 1.6036 5.4258 1.8688 1.7088
SN2 2.8169 4.6786 1.5703 2.4054 4.2531 1.0511 1.2565
SN3 1.5251 2.3891 3.7058 0.8018 5.1055 2.6279 3.9202
SN4 2.1015 3.0859 1.6620 1.6036 3.7074 2.2191 1.9601
SN5 33145 44795 32688 24054 6.4090 3.2119 0.9047
SN6 43761 5.1763  2.6327 4.0089  6.3639 4.2047 2.7140
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Table 4. Reconstructed decision matrix
Evaluation criteria RE ECR Dis ADis NND SNR LNID

SN1 03145 0.4303 0.1716 02408 0.5993 0.2035 0.1863
SN2 0.5347 0.6321 03086 03613 0.4698 0.1145 0.1370
SN3 0.2895 0.3228 0.7283  0.1204 0.5640 0.2862 0.4273
SN4 0.3989 0.4169 03266 02408 0.4095 02417 0.2136
SN5 0.6292  0.6052 0.6424 03613 0.7079 0.3498 0.0986
SN6 0.8307 0.6993 0.5174 0.6021 0.7030  0.4579  0.2958

Table 5. Positive and negative ideal solutions
Ideal solution RE ECR Dis ADis NND SNR LNID
Upper bound  0.3145 04303 0.1716 0.2408 0.5993  0.2035 0.1863
Lower bound  0.5347 0.6321 0.3086 0.3613  0.4698 0.1145 0.1370

Table 6. Priorities of SNs

Sensor node  d;" d° c” Priority
SN1 0.7191 0.6893 0.4895 4
SN2 0.6189 0.6632 0.5172 2
SN3 0.9981 0.4382 0.3051 6
SN4 0.6402 0.6469 0.5026 3
SN5 0.7077 0.5942 0.4564 5
SN6 0.6216  0.8394  0.5745 1

In this way, all the nodes calculate C;" representing the priority for neighboring nodes and
themselves. If a certain node has neighboring node(s) with larger C;* than its, it discards CH competition and
becomes CM node. If its C;” is the largest, it broadcasts CH_Msg(-) within the competitive radius R;"""* to
declare that it has become the CH node. The nodes which received CH Msg(-) response to it with
Join_Msg(+) in order to inform that they have become the CM nodes of the CH node.

When nodes receive more than two CH_Msg(-) messages, they enlist in the most suitable CH node
using FCNP-VWA-TOPSIS as in CH node selection. In other words, the CH node with values of larger E]®*,
shorter D; s, lower ECR;, higher NND;, shorter Df'/¢/, higher SNR;, and lower NLID; is the most suitable
CH node and enlist the CH node. Such a CH node has value of the largest relative closeness to the positive
ideal solution C;". The node which receives no CH_Msg(*) for a certain time declares itself as a CH node.

4.1.3. Routing tree construction

The proposed protocol constructs the routing tree that is the route for transmitting the sensed data to
BS via relays between CH nodes. As soon as the clusters are formed, CH nodes broadcast
NextHop_CH_Msg (i,E[®,ECR;,D; s, NND;,DveT SNR;,NLID;) within mR;°"""¢, where m is the minimum
integer that allows any CH node to contain at least one neighboring CH node according to [27]. Through the
broadcast of NextHop CH_ Msg(-), all the CH nodes get to know the forward neighboring CH nodes whose
distance to BS is shorter than that of itself.

First, the fitness values of each CH node to find the optimal route from the CH nodes to BS are
calculated. The fitness function for this FV (CH;) is defined exploiting all 7 multi-criteria used in clustering,
unlike previous studies where only RE and distance to BS were used as the main factors.

cap res
EFOP_E] Digs ECR;
FV(CH) =Y/_,w;C; = w; —p— 4w, —= w L
(CH) 21_1 ) 1 E;P 2 max Dy gs 3 max ECR;
tw plver 4y, MOXNNDiZ NND; | max SNRe=SNR; | NLID; (15)
4 max paver 5 max NND; ®  max SNR; 7 max NLID;

inei

Here, w; denotes the weight assigned by FCNP-VWA to 7 multi-criteria, max x -the maximum value of the
corresponding x criterion, and Ef “P_the energy capacity of CH;. From (15), it can be seen that CH nodes with
high E7®, short D; g, low ECR;, small NND;, short D7¢l, high SNR;, and low NLID; can be the next hop
CH node. In the previous works related to exploitation of EPO in routing of WSNs, only RE and distance to
BS were used as the main factors. Unlike previous works, however, the values of 7 factors or criteria were
taken into account in determining the next hop CH node. In addition, these criteria have accurate weights
assigned by FCNP-VWA according to their importance degree, not fair weights. The improved EPO
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considers not only RE and distance (D; s and Dfye; ), but also change of ECR, the number of neighboring

nodes, link’s quality and target advent frequency, therefore choosing the optimal next hop CH node.

Each CH node uses EPO to construct a routing tree to BS as follows. First, every single CH node
randomly selects neighboring CH nodes within mRicompe of its forward neighboring CH nodes. This
corresponds to the occurrence and determination of the emperor penguin huddle boundary in EPO. At this
time, the gradient within the network area of neighboring CH nodes is used. In other words, these gradients

(1) specify the forward neighboring CH nodes (¢).

Yp=ve (16)

When the analytic function for the sensor network area is called F, it is associated with a vector k
and is expressed as a complex potential:

F=¢+ix a7

where i is the imaginary constant. Finally, the forward neighboring CH nodes with high gradient within
mR;°"" are chosen, thus saving energy and improving network lifetime.

Next, the energy among the selected forward neighboring CH nodes is calculated. This corresponds
to the calculation of temperature profile around the emperor penguin huddle in EPO. To this end, the
exploitation and exploration process are performed for the selected forward neighboring CH nodes. Through
the computation of this energy profile, the RE of the forward neighboring CH nodes is identified. The energy
profile is calculated as (18) and (19):

- _ Ma¥iteration

RE = (RE X—Maxite‘ration) (18)
1,forr>1

RE = {O,forr <1 -

Here, x denotes the current iteration, and MaX;terqtion-the maximum number of iterations, and r -the
iteration that must transmit the corresponding data packet, respectively. In (19), the energy value is calculated
as 1 if the number of iterations that must send a data packet is greater than 1, and as 0 if the number of
iterations is less than 1.

Consecutively, the proposed routing tree construction method determines the current best CH node
by calculating the distance between the selected forward neighboring CH nodes.

Dey = Abs(SF(A) - L(x) — B - Ly (x)) (20)

Here, BCH denotes the distance between the given CH node and the best CH node, i.e., its fitness value is the
largest CH node, and x indicates the current iteration. L and ZCH denotes the position vectors of the best
optimal solution and the CH node, respectively, and SF() represents the social forces that change the
position of themselves towards the best optimal solution. A and B are vectors used for collision avoidance,
which are expressed as (21)-(23):

A = MP x (RE'+ NET,;4(Accuracy)) x Rnd()) — RE’ (1)
NETgriq(Accuracy) = Abs(z - ZCH) (22)
B = Rnd() (23)

Here, MP is a parameter used to maintain the gap between exploration agents for collision avoidance, where
is set to 2. The grid accuracy, NETyq (Accuracy) is used to compare the distance difference between CH
nodes, and is a random number between O and 1. The best optimal CH node is selected through the
exploitation and exploration process:

SF(A) = (Vh-e~*/m —¢=x) (24)
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Here, e is exponential function, # and m are the control parameters for better exploitation and exploration
while their range of values lies between [2,3], [1,5,2], respectively. The exploration process indicates the
optimal CH node initially obtained to transmit the data packet with all satisfied aspects, and the exploitation
process means the best CH node obtained after the exploration process.

Finally, mover is reassigned. This corresponds to updating the position of the forward neighboring
CH nodes with the CH node i.e., mover in EPO, at the best optimal position obtained.

Ley(x+1) =L(x) —A-Dgy (25)

Here, ZCH (x + 1) denotes the updated next position of the CH node. The next position of the CH
node for data packet transmission is updated in this way, and such process is performed repeatedly until the
route to BS is obtained.

4.2. Data gathering phase

First, the intra-cluster communication where all the CM nodes transmit sensed data to its CH node is
performed. To avoid the collision when multiple CM nodes within a cluster transmit sensed data
simultaneously to a CH node, the CH node sends Schedule Msg(+) to its CM nodes at the beginning of data
gathering phase and assigns transmission time slots. The CM nodes that receive Schedule Msg(-) transmit
sensed data to its CH node only during the time slot assigned to them and then switch to sleep mode for
saving energy. If any CM node does not transmit the sensed data during the assigned time slot in the current
round, its CH node decides the CM node does not have any data to be transmitted or the CM node already
died. In this case, CH node does not assign time slot for the CM node in scheduling of the next round. After
the intra-cluster communication, the CH nodes perform the infusion processing including data redundancy
removal and data compression. After that, the inter-cluster communication between CH nodes is proceeded
through the constructed routing tree and the sensed data is transmitted to BS. Algorithm 1 shows the pseudo
code of an uneven cluster-based routing protocol using an integrated FCNP-VWA-TOPSIS and improved
EPO.

Algorithm 1. A distributed uneven cluster-based routing protocol using an integrated FCNP-VWA-TOPSIS
and improved EPO
Input: Set of alive sensor nodes, weights of 7 criteria determined by FCNP-VWA, Initialization parameters
for EPO
Output: An optimally constructed routing tree
1: procedure FVE-EPO-UCR
2: BS broadcast BS_start Msg(wy,...,w;,d; ", d{‘"jin) and inform 7 multi-criteria’ weights assigned by
FCNP-VWA to sensor nodes;
: Exchange Hello Msg(-) between sensor nodes and obtain 7 criteria values of neighbors;
: Choose CH nodes with TOPSIS and broadcast CH_Msg(+) in competitive radius;
: Enlist proper CH node with TOPSIS and response to Join_Msg(*);
: Call EPO algorithm in [25] using fitness function of (15) to choose the next optimal CH node;
: Construct the routing tree from each CH node to BS;
: CH node send Schedule Msg(+) to its CM nodes;
: end procedure

O 01N N bW

5. PERFORMANCE EVALUATION
5.1. Simulation setup

We conduct extensive simulations on MATLAB 2020a to evaluate the performance of the proposed
protocol named FVT-EPO-UCR. The performance of the proposed protocol called FVT-EPO-UCR is
compared with UCR [27], UCFIA [14], and FMCB-ER [20]. In the simulation experiment, sensor nodes
(SNs) from 100 to 300 are randomly placed in 200x200 m? area and BS is fixed at (250, 100). The size of the
data packet and the control packet is 4000 bits and 200 bits, respectively. The grid, which is the effective
monitoring area of each sensor node, is represented by a polygon defined by Voronoi diagram. The whole
network area with red dots indicating locations of high importance such as roads and battle fields is shown in
Figure 2. In the simulation, the frequency of targets appearing in the red regions is two times higher than in
the other locations. For fair comparison, a gird-based clustering of FMCB-ER is converted to uneven
clustering scheme of other three comparative protocols to confirm clustering scheme of all comparative
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protocols. A constant coefficient y in (13) denoting the competition radius for uneven clustering is set to 0.3
[27]. The other parameters are set as in Table 7.
The following performance metrics are used to evaluate the performance of cluster-based routing

protocols:

— Network energy consumption: this metric is defined as the amount of energy consumed by all sensor
nodes in the network.

— Residual energy variation: it is a metric evaluating the RE variance of all nodes in the network. Then, the
already dead nodes are excluded from this calculation.

— Successfully delivered packet rate: it denotes data packets successfully transported to BS over the total
number of packets sent by CM nodes.

— Network lifetime: it is defined as the time till the first sensor node dies under the different number of SNis.
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Figure 2. Sensor nodes and its Voronoi diagram and important locations with red points

Table 7. Simulation parameters

Parameter Value
Network size 200x200 m?
Number of nodes 100-300
Location of BS (250 m, 100 m)
Initial energy 2]
Length of data packet 4000 bits
Length of control packet 200 bits
Eelec 50 nJ/bit
&5 10 pJ/bit/m*
Empf 0.0013 pJ/bit/m*
EDA 5 nJ/bit/signal

5.2. Simulation results and analysis
The experimental results were obtained with 20 times of simulated averages without unbiased
comparison.

5.2.1. Network energy consumption

This simulation was conducted under the equal condition in terms of all compared protocols. A
smaller network energy consumption represents that the corresponding routing protocol utilizes the given
energy more effectively. From simulation results shown in Figure 3 and Table 8, it can be seen that the
proposed protocol consumes the smallest amount of energy by varying the number of sensor nodes (SNs) for
performing the surveillance tasks. For 300 of the number of SNs, the proposed protocol consumes less
amount of energy than 15 mJ, but UCR, UCFIA and FMCB-ER protocols consume more energy of 34 mlJ,
23 mJ, and 17 mJ than the proposed, respectively. Less energy consumption in executing the proposed
protocol implies that the sensor nodes operating according to this protocol can operate during longer rounds
than when using other protocols of more energy consumption. This is because of exploiting an integrated
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FCNP-VWA-TOPSIS and the improved EPO, and achieving the optimum energy consumption balance in the
cluster-route establishment phase.

FMCB-ER protocol comes the next of the proposed. This result hints that FMCB-ER exploiting
FAHP-TOPSIS and EPO consumes less energy than UCFIA using fuzzy logic and max-min ACO. From this
result, we can see that from the viewpoint of energy consumption, an integrated FAHP-TOPSIS is superior to
fuzzy logic and EPO is superior to max-min ACO when using an integrated FAHP-TOPSIS and fuzzy logic
in selecting CH nodes, and EPO and max-min ACO in constructing the routing tree, respectively. UCR
shows the biggest energy consumption. It is because this protocol uses not only the RE to select the CH node,
but also two criteria of the RE and distance to BS to construct a routing tree without introducing any meta-
heuristic, thus consuming more energy.

S

L~
wn

10 FVT-EPO-UCR | |

] —&—FMCB-ER
& —4—UCFIA
—b—UCR

Network energy consumption(mdJ}

100 150 200 250 300
Number of sensor nodes

Figure 3. Comparison of network energy consumption with varying the number of SNs

Table 8. Network energy consumption (mJ)

Number of sensor nodes=>Protocold 100 150 200 250 300

FVT-EPO-UCR 6.0023 79822  11.0136  12.9924 15.0282
FMCB-ER 8.0105 10.1017 13.9198 15.0122 17.1712
UCFIA 11.9749  13.1042 17.0429 20.9920 23.1238
UCR 23.1062 27.9201 28.8921 31.0203 34.0671

5.2.2. Residual energy variation

This metric reveals balance and fairness of energy consumption of each sensor node. A smaller RE
variation indicates better balance and fairness of energy consumption. Varying the number of SN,
simulation results of residual energy variance (REV) are shown in Figure 4 and Table 9. These results show
that the REV of proposed protocol is the smallest compared to other protocols. In simulation results, when
the number of SNs is 300, the proposed protocol shows the REV of 44.1%, 65.2%, and 88.2% compared to
UCR, UCFIA, and FMCB-ER, respectively. The reasons are as follows: the proposed protocol primarily
assigns weights to multi-criteria by FCNP-VWA, and then completes the clustering step with TOPSIS based
on these weights. FCNP uses fuzzy pairwise interval or differential scale to address the issue magnifying the
actual pairwise difference in FAHP. Moreover, in the proposed protocol, the assigned weights are
compensated by VWA to avoid the resolution loss in weighting for criteria with similar evaluations. This
results in more accurate criterion-by-criterion weights can be obtained. Thus, this protocol not only does not
magnify the perception of the pairwise difference, but also selects more reasonable CH node than FMCB-ER
and UCFIA protocols using FAHP and fuzzy logic, respectively. In addition, the proposed protocol
constructs the routing tree from CH nodes to BS using the improved EPO. At this time, the fitness values of
CH nodes are calculated to exploit 7 multi-criteria used in clustering unlike previous works where only RE
and distance to BS are used as the main factors. Thus, it balances the energy consumption of each node by
jointly considering multi-criteria in the whole process of clustering routing.

Ranking three previous protocols in terms of the REV by varying the number of SNs, FMCB-ER
comes the next, UCFIA the third, and UCR the last. That is, FMCB-ER protocol follows the proposed
protocol and indicates smaller REV than other two comparative protocols. This is because of using an
integrated MCDM method, the FAHP-TOPSIS and constructing the routes from CH nodes to BS with EPO.
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However, though UCFIA uses a meta-heuristic named the max-min ACO to construct a routing tree, it
realizes the clustering with fuzzy logic using only three criteria such as RE, distance to BS and neighboring
degree. Thus, it does not choose the CH node than FMCB-ER more reasonably and does not balance the
energy consumption as much as FMCB-ER achieves.
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Figure 4. Comparison of RE variance with varying the number of SNs

Table 9. RE variation (mJ)

Number of sensor nodes=>Protocol} 100 150 200 250 300

FVT-EPO-UCR 2.473e-5 2.393e-5 2.555e-5 2.344e-5 2.397e-5
FMCB-ER 3.055e-5 2.934e-5 2917e-5 2.669¢-5 2.918e-5
UCFIA 3.774e-5 3.65le-5 3.849¢-5 4.000e-5 3.941e-5
UCR 5.615e-5 5.989%-5 5.693e-5 5.419e-5 5.707e-5

5.2.3. Successfully delivered packet rate

The simulation results of successfully delivered packet rate are shown in Figure 5 and Table 10.
From these simulation results, it can be seen that SDPR of the proposed protocol is the highest. When the
number of SNs is 200, the SDPR of the proposed protocol is 0.902. This is higher value of 123.3%, 111.8%,
and 103.5% compared to the existing schemes, UCR, UCFIA, and FMCB-ER, respectively. It is due to using
a SNR criterion in the proposed protocol. In other words, the sensor node with higher SNR has higher
possibility which can be chosen to CH node and CH node with higher SNR is chosen to the next CH node
with higher probability. Thus, this protocol increases the successfully delivered rate of the sensed data
packet. FMCB-ER follows the proposed protocol because this protocol also uses three criteria or factors such
as node energy, intra-cluster distance and restart number in evaluating the quality of service (QoS) of link
between nodes.
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Figure 5. Comparison of successfully delivered packet rate with varying the number of SNs
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Ranking the rest two compared protocols in terms of this metric, UCFIA comes the next of FMCB-
ER and UCR is the last order. However, the difference of this criterion between two protocols is not so big.
As considered in the related works, UCFIA uses three multi-criteria such as RE of nodes, distance to BS, and
neighboring degree of nodes.

This protocol uses these criteria to choose CH nodes by fuzzy logic and constructs the routing tree
by max-min ACO. Thus, it considers the link QoS’s influence to a certain extent. However, UCR does not
exploit any MCDMs or meta-heuristic algorithms and only uses two criteria of RE and distance to construct
the uneven cluster-based routing tree for data gathering, thus having the lowest SDPR.

Table 10. Successfully delivered packet rate
Number of sensor nodes=>Protocol} 100 150 200 250 300

FVT-EPO-UCR 0953 0931 0902 0.851 0.810
FMCB-ER 0932 0.890 0.869 0.831 0.789
UCFIA 0.890 0.841 0.795 0.772 0.721
UCR 0.778 0.752 0.730 0.691 0.623

5.2.4. Network lifetime

Figure 6 and Table 11 show the simulation results of network lifetime. From the simulation results,
it can be seen that the proposed protocol has the longest network lifetime under all the number of SNs. If the
number of SNs is 300, network lifetime of the proposed protocol is increased by 158.0%, 119.3%, and
113.7% compared to UCR, UCFIA, and FMCB-ER, respectively. Since the proposed protocol has the
smallest REV, it is not without reason that it has the longest network lifetime. FMCB-ER comes the next and
is superior to the other compared protocols for all cases of the number of SNs. This indubitably indicates that
when the integrated FAHP-TOPSIS and EPO are applied to the cluster-route establishment phase of the
cluster-based routing protocol, it predominates over the other protocols. The next order is UCFIA. UCFIA
protocol uses fuzzy logic and the max-min ACO to choose the CH nodes and to construct the routes to BS,
thus indicating longer network lifetime compared to UCR.
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Figure 6. Comparison of network lifetime with varying the number of SNs

Table 11. Network lifetime (rounds)
Number of sensor nodes=>Protocoll 100 150 200 250 300

FVT-EPO-UCR 1133 1352 1459 1492 1623
FMCB-ER 1102 1261 1388 1422 1478
UCFIA 973 1165 1217 1312 1393
UCR 672 765 823 985 1057

UCR has the lowest network lifetime. It is because this protocol does not use not only any MCDM
or fuzzy logic to select the CH node, but also any meta-heuristics such as EPO or max-min ACO to construct
a routing tree. As a result, this protocol consumes more energy and arises bigger REV, thus decreasing
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network lifetime. The simulation results related to the number of dead nodes when varying the number of
rounds are shown in Figure 7 and Table 12. In this simulation, the number of SN is fixed as 300.
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Figure 7. Comparison of the number of deads nodes in terms of the number of rounds

The number of dead nodes can be defined as the number of rounds till the first node dies (FND), one
till the half of nodes in the network die (HND) and one till the last node dies (LND), respectively. When the
number of SNs is 300, the number of rounds in terms of FND are 1043, 1381, 1449, and 1648 rounds for four
compared protocols, that is, UCR, UCFIA, FMCB-ER, and FVT-EPO-UCR, respectively. FND, HND, and
LND of the proposed protocol are 1648, 1746, and 1864 rounds, respectively, and they are much longer than
FND, HND, and LND of the compared protocols. On the whole, we can conclude that the proposed protocol
is absolutely superior to the other existing uneven cluster-based routing protocols in terms of the above four
metrics.

Table 12. Number of dead nodes
Number of rounds=>Protocold 1000 1125 1250 1375 1500 1625 1750 1875 2000

FVT-EPO-UCR 0 0 0 0 0 0 152 300 300
FMCB-ER 0 0 0 0 45 272 300 300 300
UCFIA 0 0 0 0 208 300 300 300 300
UCR 0 191 300 300 300 300 300 300 300

6. CONCLUSION

A novel uneven cluster-based routing protocol proposed in this paper uses two integrated intelligent
optimization methods, FCNP-VWA-TOPSIS and FCNP-VWA-EPO. An integrated FCNP-VWA-TOPSIS
predominates over the individual MCDM methods or other integrated MCDM methods such as AHP-
TOPSIS and FAHP-VWA-TOPSIS. The improved EPO blended FCNP-VWA to the traditional EPO i.e., an
integrated FCNP-VWA-EPO is more predominant than existing protocols exploiting EPO and FAHP-
TOPSIS-EPO. Thus, compared to existing protocols, the proposed protocol can maintain the stable operation
of network, reliable transmission and good connectivity between the neighboring nodes in the whole
network. In particular, the proposed protocol achieves smaller REV of 44.1%, 65.2%, and 88.2% compared
to UCR, UCFIA, and FMCB-ER, respectively, thus prolonging the network lifetime greatly. The idea of
optimal design which combines an integrated FCNP-VWA-TOPSIS with a meta-heuristic algorithm can be
effectively applied not only in developing the cluster-based routing protocol for WSNs, but also in other
branches such as designing the joint charging and data gathering protocol for WRSNs. We will try to
improve the performance of the proposed protocol by combining an integrated FCNP-VWA-TOPSIS with
other meta-heuristic algorithms superior to EPO and to extend the design idea of this paper to other fields in
our future works.
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