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 Energy harvesting (EH) from ambient vibrations is a promising approach for 

powering self-sustained devices. Nonlinear oscillators with time-delay 

feedback have attracted attention for their ability to broaden operating ranges 

and improve efficiency. Conventional linear harvesters and even nonlinear 

devices often suffer from instabilities, hysteresis, and limited bandwidth. 

Understanding how periodic and quasi-periodic (QP) vibrations contribute to 

EH in systems with dual time delays remains an open challenge. Prior 

studies have shown that time delay in mechanical subsystems can induce 

large-amplitude QP oscillations, while piezoelectric coupling with delay can 

enhance power output. However, most analyses treat mechanical and 

electrical delays separately. The combined influence of distinct delays in 

both mechanical and electrical components has not been systematically 

investigated, leaving unclear how dual-delay mechanisms affect stability and 

harvested power. This study models an EH system as a delayed Duffing–van 

der Pol oscillator coupled with a delayed piezoelectric circuit. Using 

perturbation methods and numerical simulations, we derive periodic and QP 

solutions near delay-induced parametric resonance and quantify harvested 

power. Results show that small mechanical delay amplitudes favor periodic 

vibrations, while larger amplitudes destabilize them, shifting energy 

extraction to QP vibrations with superior performance. Electrical delay 

further enhances harvested power across specific parameter ranges. These 

findings advance the theoretical foundation of nonlinear EH, highlighting 

QP vibrations as a viable strategy for efficient broadband energy extraction. 

The work provides design guidelines for delay-controlled harvesters and 

suggests future extensions to experimental validation and 

multi-degree-of-freedom systems. 
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1. INTRODUCTION 

Energy harvesting (EH) systems are increasingly important for powering self-sustained devices in 

wireless sensing, biomedical implants, and smart infrastructure. Traditional linear harvesters often suffer 

from narrow bandwidth and limited efficiency. To overcome these shortcomings, nonlinear stiffness has been 

introduced into mechanical elements, improving performance in both monostable devices with hardening 

behavior [1]–[4] and bistable configurations [5]–[7]. 

Despite these advances, nonlinear attachments can be undermined by instabilities and jump 

phenomena near the edges of the stable branch in the frequency response [8]. Self-excited harvesters with 
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linear stiffness can generate limit-cycle (LC) oscillations that enable energy extraction, but these oscillations 

may become unstable through secondary Hopf bifurcations, leading to quasi-periodic (QP) vibrations  

[9], [10]. In some contexts, such as aerodynamic or base excitations, QP vibrations reduce harvested power 

once flutter speed is exceeded [11], [12]. This highlights the challenge of maintaining stable and efficient EH 

across broad operating conditions. 

Recent studies have shown that introducing time delay can fundamentally alter system dynamics. 

Time-delayed feedback has been demonstrated to produce large-amplitude QP oscillations over wide 

parameter ranges [13]. Investigations into delayed van der Pol-type harvesters with modulated delay 

amplitude confirmed that QP oscillations can contribute effectively to EH [14]. Scenarios with delay applied 

to both mechanical and electrical subsystems revealed that maximum power output does not always coincide 

with maximum system response amplitude [15]. Similarly, delayed Duffing oscillators coupled with 

piezoelectric circuits have been shown to support energy extraction over wide frequency ranges, avoiding 

hysteresis and instabilities near resonance [16]. Time delay has also been used to extend the dynamic range 

of nonlinear harvesters with damping [17], and modulation of delay amplitude has been shown to induce 

advantageous QP vibrations outside resonance regions [18]. 

While these studies highlight the potential of time-delay mechanisms, most focus on either 

mechanical delay or electrical delay in isolation. The combined influence of distinct delays in both 

subsystems has not been systematically analyzed. Moreover, although QP vibrations have been identified as 

beneficial in some cases, their stability and contribution to EH efficiency remain insufficiently characterized 

across different parameter regimes. This gap limits the practical design of harvesters that exploit dual-delay 

mechanisms. 

Building on prior work, the present study develops and analyzes a system combining a delayed 

Duffing–van der Pol oscillator with a piezoelectric circuit that also incorporates delay. Using perturbation 

techniques and numerical simulations, we derive periodic and QP solutions near delay-induced parametric 

resonance, quantify harvested power, and establish stability charts. Particular attention is given to how time 

delays in the electrical subsystem influence harvesting efficiency, complementing naturally occurring 

mechanical delays observed in processes such as milling and turning [19]–[21]. 

By clarifying the interplay between mechanical and electrical delays, this work advances the 

theoretical foundation of nonlinear EH. The findings provide design guidelines for optimizing harvesters 

under broadband excitations, demonstrating that maximum power output does not necessarily align with 

maximum oscillation amplitude. More broadly, the study contributes to the development of efficient, 

delay-controlled harvesters for real-world applications, supporting the transition toward self-powered 

systems in engineering and industrial contexts. 

 

 

2. FORMULATION OF THE ENERGY HARVESTER MODEL AND ANALYSIS 

The EH system under investigation is based on a delayed Duffing–Van der Pol oscillator 

mechanically coupled to an electrical circuit via a piezoelectric transducer, as illustrated in the schematic of 

Figure 1. Both the mechanical and electrical subsystems are subject to delayed feedback. The dimensionless 

form of the system’s governing equations is given (1) and (2): 

 

𝑥̈(𝑡) + 𝛿𝑥̇(𝑡) + 𝜆𝑥̇(𝑡)𝑥(𝑡)2 + 𝑥(𝑡) + 𝛾𝑥(𝑡)3 − 𝜒𝑣(𝑡) = 𝛼 𝑥(𝑡 − 𝜏1) (1) 

 

𝑣̇(𝑡) + 𝛽𝑣(𝑡) + 𝜅𝑥̇(𝑡) = 𝛼3𝑣(𝑡 − 𝜏2) (2) 

  

In this system, x(t) denotes the relative displacement of the rigid mass m, and v(t) represents the 

voltage across the resistive load. The parameter δ refers to the mechanical damping coefficient, while λ and β 

correspond to the reciprocal of the electrical time constant and the electrical damping, respectively. The term 

γ characterizes the stiffness of the mechanical structure. Piezoelectric coupling is represented by χ on the 

mechanical side and κ in the electrical circuit. Delayed feedback is introduced in both subsystems: the 

mechanical part is governed by a feedback gain α and a time delay τ₁, while the electrical subsystem includes 

a gain α₃ and a delay τ₂. It is worth noting that the delay in the mechanical branch is considered intrinsic to 

the dynamics of the harvesting system, as observed in applications such as milling and turning processes 

[19]–[21]. Conversely, the delay in the electrical loop is deliberately introduced to enhance the harvester’s 

power output [15]. The control parameter α serves as a modulated delay gain associated with the 

displacement feedback. 

 

𝛼 = 𝛼1 + 𝛼2cos(𝜔𝑡) (3) 
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Here, 𝛼1 denotes the constant (unmodulated) component of the delay amplitude, while 𝛼2, 𝜔 

represent the amplitude and frequency of the modulation, respectively. It should be noted that modulated 

delay amplitudes have been extensively utilized to enhance EH performance [14], [15], [18]. 

 

 

 
 

Figure 1. Schematic description of the EH system 

 

 

It is important to highlight that the scenario in which nonlinear stiffness is absent (𝛾 = 0) and the 

delays in the mechanical and electromagnetic components are equal has been examined in [15]. Additionally, 

the situation involving a linear damper and an unmodulated time delay was analyzed in [16]. In this study, we 

focus on the impact of the time delay in the electrical circuit on optimizing the EH performance of the 

harvester described by (1) and (2). We assume that the delays in the mechanical and electrical components 

differ not only in their timing but also in their amplitudes. 

The system’s response is analyzed in the vicinity of delay-induced parametric resonance by 

applying the resonance condition 1 =
𝜔2

4
+ 𝜎, where σ is a detuning parameter. To carry out the analysis, the 

method of multiple scales [22] is employed. This approach leads to the derivation of the steady-state response 

corresponding to periodic solutions of (1) and (2), which is governed by a sixth-order algebraic equation in 

the amplitude a. 

 

(𝑆1𝑎 + 𝑆2𝑎3)2 + (𝑆5𝑎 + 𝑆6𝑎3)2 = (𝑆3
2 + 𝑆4

2)𝑎2 (4) 

  

An expression for the average power is obtained by integrating the dimensionless form of the 

instantaneous power 𝑃(𝑡) = 𝛽𝑣(𝑡)2 over the period of the delay modulation 𝑇. This is given by (5): 

 

𝑃𝑎𝑣 =
1

𝑇
∫

𝑇

0
𝛽𝑣2𝑑𝑡 (5) 

 

where 𝑇 =
4𝜋

𝜔
 

Using the maximization procedure, one obtains the maximum power response as (6): 

 

𝑃𝑚𝑎𝑥 = [
𝛽𝜅2𝜔2

(2𝛽−2𝛼3cos(
𝜔𝜏2

2
))2+(𝜔+2𝛼3sin(

𝜔𝜏2
2

))2
]𝑎2 (6) 

 

In (4) and (6) are used to examine the influence of different system parameters on the steady-state 

response and on the maximum output power of the harvester. In order to evaluate the QP response as well as 

the QP vibration-based EH, we approximate the QP response using the second-step perturbation method [23]. 

The approximate amplitude 𝑎(𝑡) of the QP response reads.  

 

 

𝑎(𝑡) = √
𝑅2

2
+

𝑅2𝜈2

2(𝑆5−𝑆4)2 + [
𝑅2

2
−

𝑅2𝜈2

2(𝑆5−𝑆4)2]cos(2𝜃𝑡) (7) 

 

and the envelope of the QP modulation is delimited by 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥  given by (8) and (9): 
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𝑎𝑚𝑖𝑛 = 𝑚𝑖𝑛{√
𝑅2

2
+

𝑅2𝜈2

2(𝑆5−𝑆4)2 ± [
𝑅2

2
−

𝑅2𝜈2

2(𝑆5−𝑆4)2]} (8) 

  

𝑎𝑚𝑎𝑥 = 𝑚𝑎𝑥{√
𝑅2

2
+

𝑅2𝜈2

2(𝑆5−𝑆4)2 ± [
𝑅2

2
−

𝑅2𝜈2

2(𝑆5−𝑆4)2]} (9) 

 

Consequently, the power and the maximum powers output in the QP modulation region are given, 

respectively, by (10) and (11): 

 

𝑃𝑄𝑃(𝑡) = 𝛽(𝜅𝑒(𝛼3𝑒𝛽𝜏2−𝛽)𝑡 ∫
𝑡

0
𝑥̇(𝑡′)𝑒(𝛽−𝛼3𝑒𝛽𝜏2)𝑡′𝑑𝑡′)2 (10) 

 

𝑃𝑚𝑎𝑥𝑄𝑃 =
𝛽𝜅2𝜈2

[(𝛽−2𝛼3cos(
𝜔𝜏2

2
))2+(𝜈+2𝛼3sin(

𝜔𝜏2
2

))2]
𝑎2 (11) 

 

where now 𝑎 in (11) is derived from (8) and (9). 

Figure 2 illustrates the relationship between the amplitude of the periodic and QP responses, along 

with the maximum output power amplitudes (𝑃𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥𝑄𝑃), as a function of the unmodulated delay 

amplitude 𝛼1. The results are presented for two cases: 𝛼3 = 0 (representing an undelayed circuit, shown by 

the grey line) and 𝛼3 = 𝛽 (indicating a delayed circuit, represented by the black line). The insets in the figure 

display the time histories of the amplitudes (Figure 2(a)) and the power responses (Figure 2(b)). 

 

 

  
(a) (b) 

 

Figure 2. Vibration and output power amplitudes versus the unmodulated delay amplitude α1;  

(a) vibration amplitude time histories and (b) output power responses for delayed (black) and undelayed 

(grey) electric circuits 

 

 

Figure 2 illustrates the relationship between the vibration and output power amplitudes and the 

unmodulated delay amplitude α1. The results are shown for delayed (α3=β) and undelayed (α3=0) electric 

circuits, where black and grey lines denote the delayed and undelayed cases, respectively. Solid and dashed 

lines correspond to stable and unstable analytical predictions, while circles represent numerical simulations. 

The system parameters are set to 𝛼2 = 0.25, 𝜏1 = 5.2, 𝜏2 = 4.2, 𝜒 = 0.05, 𝛽 = 0.05, 𝜆 = 0.2, 𝛿 = −0.1, 

𝛾 = 0.05, 𝜔 = 2, and 𝜅 = 0.5. 

Figure 2 indicates that at small values of 𝛼1, energy can only be harvested from periodic vibrations. 

However, as 𝛼1 increases, the periodic solution becomes unstable, and energy extraction shifts exclusively to 

the QP vibrations, which demonstrate superior performance compared to the periodic output power. The plots 

also reveal that introducing a delay in the electrical circuit (𝛼3 ≠ 0, represented by the black line) results in a 

reduction of both the periodic and QP modulation amplitudes (Figure 2(a), black line), while the 

corresponding harvested power increases (Figure 2(b), black line). This suggests that the maximum power 

output does not necessarily align with the maximum amplitude of the oscillations. 

 

 

3. CONCLUSION 

In summary, we have investigated the EH performance of a delayed Duffing-van der Pol oscillator 

that is coupled with a delayed piezoelectric harvesting device. It is assumed that the mechanical and 
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piezoelectric subsystems exhibit different time delays and varying delay amplitudes. The analysis focuses on 

the region near the delay parametric resonance, where the frequency of the delay modulation approaches 

twice the natural frequency of the oscillator. Perturbation techniques are employed to approximate both 

periodic and QP vibrations, which are utilized for EH. We explored the impact of the delay in the 

piezoelectric subsystem on the EH performance of the delayed Duffing-van der Pol harvester. Notably, it was 

demonstrated that the presence of modulated time delays in the mechanical subsystem leads to an optimal set 

of system parameters that maximizes both the amplitude of QP vibrations and the corresponding output 

power. To ensure the stability of the QP vibrations during the energy extraction process, a stability analysis 

was conducted, resulting in the establishment of a QP stability chart. The findings also indicate that the 

introduction of delay in the electrical circuit enhances the output power. 
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