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Energy harvesting (EH) from ambient vibrations is a promising approach for
powering self-sustained devices. Nonlinear oscillators with time-delay
feedback have attracted attention for their ability to broaden operating ranges
and improve efficiency. Conventional linear harvesters and even nonlinear
devices often suffer from instabilities, hysteresis, and limited bandwidth.
Understanding how periodic and quasi-periodic (QP) vibrations contribute to
EH in systems with dual time delays remains an open challenge. Prior
studies have shown that time delay in mechanical subsystems can induce
large-amplitude QP oscillations, while piezoelectric coupling with delay can
enhance power output. However, most analyses treat mechanical and
electrical delays separately. The combined influence of distinct delays in
both mechanical and electrical components has not been systematically
investigated, leaving unclear how dual-delay mechanisms affect stability and
harvested power. This study models an EH system as a delayed Duffing—van
der Pol oscillator coupled with a delayed piezoelectric circuit. Using
perturbation methods and numerical simulations, we derive periodic and QP
solutions near delay-induced parametric resonance and quantify harvested
power. Results show that small mechanical delay amplitudes favor periodic
vibrations, while larger amplitudes destabilize them, shifting energy
extraction to QP vibrations with superior performance. Electrical delay
further enhances harvested power across specific parameter ranges. These
findings advance the theoretical foundation of nonlinear EH, highlighting
QP vibrations as a viable strategy for efficient broadband energy extraction.
The work provides design guidelines for delay-controlled harvesters and
suggests  future  extensions to  experimental validation and
multi-degree-of-freedom systems.
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1. INTRODUCTION

Energy harvesting (EH) systems are increasingly important for powering self-sustained devices in
wireless sensing, biomedical implants, and smart infrastructure. Traditional linear harvesters often suffer
from narrow bandwidth and limited efficiency. To overcome these shortcomings, nonlinear stiffness has been
introduced into mechanical elements, improving performance in both monostable devices with hardening
behavior [1]-[4] and bistable configurations [5]-[7].

Despite these advances, nonlinear attachments can be undermined by instabilities and jump
phenomena near the edges of the stable branch in the frequency response [8]. Self-excited harvesters with
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linear stiffness can generate limit-cycle (LC) oscillations that enable energy extraction, but these oscillations
may become unstable through secondary Hopf bifurcations, leading to quasi-periodic (QP) vibrations
[9], [10]. In some contexts, such as aecrodynamic or base excitations, QP vibrations reduce harvested power
once flutter speed is exceeded [11], [12]. This highlights the challenge of maintaining stable and efficient EH
across broad operating conditions.

Recent studies have shown that introducing time delay can fundamentally alter system dynamics.
Time-delayed feedback has been demonstrated to produce large-amplitude QP oscillations over wide
parameter ranges [13]. Investigations into delayed van der Pol-type harvesters with modulated delay
amplitude confirmed that QP oscillations can contribute effectively to EH [14]. Scenarios with delay applied
to both mechanical and electrical subsystems revealed that maximum power output does not always coincide
with maximum system response amplitude [15]. Similarly, delayed Duffing oscillators coupled with
piezoelectric circuits have been shown to support energy extraction over wide frequency ranges, avoiding
hysteresis and instabilities near resonance [16]. Time delay has also been used to extend the dynamic range
of nonlinear harvesters with damping [17], and modulation of delay amplitude has been shown to induce
advantageous QP vibrations outside resonance regions [18].

While these studies highlight the potential of time-delay mechanisms, most focus on either
mechanical delay or electrical delay in isolation. The combined influence of distinct delays in both
subsystems has not been systematically analyzed. Moreover, although QP vibrations have been identified as
beneficial in some cases, their stability and contribution to EH efficiency remain insufficiently characterized
across different parameter regimes. This gap limits the practical design of harvesters that exploit dual-delay
mechanisms.

Building on prior work, the present study develops and analyzes a system combining a delayed
Duffing—van der Pol oscillator with a piezoelectric circuit that also incorporates delay. Using perturbation
techniques and numerical simulations, we derive periodic and QP solutions near delay-induced parametric
resonance, quantify harvested power, and establish stability charts. Particular attention is given to how time
delays in the electrical subsystem influence harvesting efficiency, complementing naturally occurring
mechanical delays observed in processes such as milling and turning [19]-[21].

By clarifying the interplay between mechanical and electrical delays, this work advances the
theoretical foundation of nonlinear EH. The findings provide design guidelines for optimizing harvesters
under broadband excitations, demonstrating that maximum power output does not necessarily align with
maximum oscillation amplitude. More broadly, the study contributes to the development of efficient,
delay-controlled harvesters for real-world applications, supporting the transition toward self-powered
systems in engineering and industrial contexts.

2. FORMULATION OF THE ENERGY HARVESTER MODEL AND ANALYSIS

The EH system under investigation is based on a delayed Duffing—Van der Pol oscillator
mechanically coupled to an electrical circuit via a piezoelectric transducer, as illustrated in the schematic of
Figure 1. Both the mechanical and electrical subsystems are subject to delayed feedback. The dimensionless
form of the system’s governing equations is given (1) and (2):

F(t) + 8x(t) + Ax(D)x(t)? + x(t) + yx(t)® — yv(t) = a x(t — 71) (D)
v(t) + pv(t) + kx(t) = azv(t — 13) (2)

In this system, x(t) denotes the relative displacement of the rigid mass m, and v(t) represents the
voltage across the resistive load. The parameter o refers to the mechanical damping coefficient, while A and
correspond to the reciprocal of the electrical time constant and the electrical damping, respectively. The term
v characterizes the stiffness of the mechanical structure. Piezoelectric coupling is represented by y on the
mechanical side and « in the electrical circuit. Delayed feedback is introduced in both subsystems: the
mechanical part is governed by a feedback gain a and a time delay 11, while the electrical subsystem includes
a gain as and a delay 1. It is worth noting that the delay in the mechanical branch is considered intrinsic to
the dynamics of the harvesting system, as observed in applications such as milling and turning processes
[19]-[21]. Conversely, the delay in the electrical loop is deliberately introduced to enhance the harvester’s
power output [15]. The control parameter o serves as a modulated delay gain associated with the
displacement feedback.

a = ay + a,cos(wt) 3)
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Here, a; denotes the constant (unmodulated) component of the delay amplitude, while a,, w
represent the amplitude and frequency of the modulation, respectively. It should be noted that modulated
delay amplitudes have been extensively utilized to enhance EH performance [14], [15], [18].
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Figure 1. Schematic description of the EH system

It is important to highlight that the scenario in which nonlinear stiffness is absent (y = 0) and the
delays in the mechanical and electromagnetic components are equal has been examined in [15]. Additionally,
the situation involving a linear damper and an unmodulated time delay was analyzed in [16]. In this study, we
focus on the impact of the time delay in the electrical circuit on optimizing the EH performance of the
harvester described by (1) and (2). We assume that the delays in the mechanical and electrical components
differ not only in their timing but also in their amplitudes.

The system’s response is analyzed in the vicinity of delay-induced parametric resonance by

2
applying the resonance condition 1 = % + o, where o is a detuning parameter. To carry out the analysis, the

method of multiple scales [22] is employed. This approach leads to the derivation of the steady-state response
corresponding to periodic solutions of (1) and (2), which is governed by a sixth-order algebraic equation in
the amplitude a.

(S1a + S,a®)? + (Ssa + Sga®)? = (52 + S2)a? 4)

An expression for the average power is obtained by integrating the dimensionless form of the
instantaneous power P(t) = Sv(t)? over the period of the delay modulation T. This is given by (5):

T
Pay =7, Br2dt (5)

4m
where T = —
w

Using the maximization procedure, one obtains the maximum power response as (6):

Br?w?

(2B-2a3c05(*52))% +(w+2a3sin(52))2

Prax = [ ]az (6)

In (4) and (6) are used to examine the influence of different system parameters on the steady-state
response and on the maximum output power of the harvester. In order to evaluate the QP response as well as
the QP vibration-based EH, we approximate the QP response using the second-step perturbation method [23].
The approximate amplitude a(t) of the QP response reads.

R2 R2y2

R2 R2y2
a(t) = \/7 +——"_+ 5 - m]cos(ZGt) @)

2(S5—54)%

and the envelope of the QP modulation is delimited by a,,;, and a4, given by (8) and (9):
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, R2 R2v2 R2 R2v2

fmin = mm{\/ 7 Vawesor £ 17 T s ®)
R2 R2y2 R2 R2y2

Qnax = max{J? + 2(S5—54)2 * [7 - 2(35_54)2]} (9)

Consequently, the power and the maximum powers output in the QP modulation region are given,
respectively, by (10) and (11):

Pop(£) = Bre @ B8 [ 5 (1) eB-ase ™t gyry2 (10)

Brv? a2
[(B-2a3c05(52))2 +(v+2assin(52))?]

(an

PmaxQP =

where now a in (11) is derived from (8) and (9).

Figure 2 illustrates the relationship between the amplitude of the periodic and QP responses, along
with the maximum output power amplitudes (Ppqx, Pmaxgp), as a function of the unmodulated delay
amplitude a;. The results are presented for two cases: a3 = 0 (representing an undelayed circuit, shown by
the grey line) and a3 = [ (indicating a delayed circuit, represented by the black line). The insets in the figure
display the time histories of the amplitudes (Figure 2(a)) and the power responses (Figure 2(b)).
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Figure 2. Vibration and output power amplitudes versus the unmodulated delay amplitude a.;
(a) vibration amplitude time histories and (b) output power responses for delayed (black) and undelayed
(grey) electric circuits

Figure 2 illustrates the relationship between the vibration and output power amplitudes and the
unmodulated delay amplitude oy. The results are shown for delayed (o3=B) and undelayed (03=0) electric
circuits, where black and grey lines denote the delayed and undelayed cases, respectively. Solid and dashed
lines correspond to stable and unstable analytical predictions, while circles represent numerical simulations.
The system parameters are set to a, = 0.25, 7, = 5.2, 1, = 4.2, y = 0.05, § =0.05, 1 = 0.2, § = —0.1,
y = 0.05, w = 2,and ¥k = 0.5.

Figure 2 indicates that at small values of a;, energy can only be harvested from periodic vibrations.
However, as a; increases, the periodic solution becomes unstable, and energy extraction shifts exclusively to
the QP vibrations, which demonstrate superior performance compared to the periodic output power. The plots
also reveal that introducing a delay in the electrical circuit (a3 # 0, represented by the black line) results in a
reduction of both the periodic and QP modulation amplitudes (Figure 2(a), black line), while the
corresponding harvested power increases (Figure 2(b), black line). This suggests that the maximum power
output does not necessarily align with the maximum amplitude of the oscillations.

3. CONCLUSION
In summary, we have investigated the EH performance of a delayed Duffing-van der Pol oscillator
that is coupled with a delayed piezoelectric harvesting device. It is assumed that the mechanical and
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piezoelectric subsystems exhibit different time delays and varying delay amplitudes. The analysis focuses on
the region near the delay parametric resonance, where the frequency of the delay modulation approaches
twice the natural frequency of the oscillator. Perturbation techniques are employed to approximate both
periodic and QP vibrations, which are utilized for EH. We explored the impact of the delay in the
piezoelectric subsystem on the EH performance of the delayed Duffing-van der Pol harvester. Notably, it was
demonstrated that the presence of modulated time delays in the mechanical subsystem leads to an optimal set
of system parameters that maximizes both the amplitude of QP vibrations and the corresponding output
power. To ensure the stability of the QP vibrations during the energy extraction process, a stability analysis
was conducted, resulting in the establishment of a QP stability chart. The findings also indicate that the
introduction of delay in the electrical circuit enhances the output power.
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