ISSN: 2963-6272, DOI: 10.11591/ehs.v2i1.pp9-13

# Energy consumption solution through low cost energy conservation measures - training transfer impact check on IPMV protocol $\bf A$

## Ruchi Tyagi<sup>1,</sup> Shaikh Shamser Ali<sup>2</sup>, Suresh Vishwakarma<sup>3</sup>

<sup>1</sup>Department of Utilities Engineering, University of Trinidad and Tobago, San Fernando, Trinidad and Tobago

<sup>2</sup>Freelance Energy Auditor and Consultant, Trinidad and Tobago

<sup>3</sup>Department of Utilities Engineering, University of Trinidad and Tobago, San Fernando, Trinidad and Tobago

## **Article Info**

## Article history:

Received May 30, 2023 Revised Mar 23, 2024 Accepted Apr 16, 2024

## Keywords:

Commercial building
Energy behaviour
Energy conservation
Energy saving
Energy Users
Low-cost energy conservation
measures

# **ABSTRACT**

Energy conservation measures are the practices to use less energy to reduce both costs and the environmental impact. They include using less electricity, gas, or any other form of energy that we get from our utility at a price. Training plays a critical role in educating energy users to practice conservation measures. The paper includes two case studies at two different facilities on airconditioning applications to measure the impacts of low-cost energy conservation measures (LCECM) training transfer in actual operations. The impact was measured at both locations by reducing the air-conditioning running hours and increasing the set temperature without compromising the occupant's comfort level. As per international performance measurement and verification (IPMV) protocol A, data analysis was done using a formula to determine the quantum of savings. IPMVP output were checked further using a t-test using SPSS software. Results indicated a cumulative impact on energy conservation, environment, and cost of importing fossil fuel. Limitations include energy conservation measurements made with limited facilities and respondents' restrictions.

This is an open access article under the CC BY-SA license.



# Corresponding Author:

Ruchi Tyagi

Department of Utilities Engineering, University of Trinidad and Tobago -25 V.V. Gopaul Drive, Tarouba, San Fernando, 602905, Trinidad and Tobago

Email: csractivist@yahoo.co.uk

#### 1. INTRODUCTION

The finite fossil fuel resources available on our planet are depleting every day. Conserving energy whenever possible benefits individuals and our larger energy systems. By fine-tuning the controls and usage of software to manage energy at any facility, energy conservation activity is a low-cost measure [1]. Reducing energy consumption at home and increasing energy savings does not necessarily require purchasing energy-efficient products. Administrative and corrective measures have huge energy saving potential [2]. It has easy implementation with a small payback period, primarily administrative and remedial actions including training [3]. It will also impact demand side management and load curve [4]. Human energy usage behaviour can positively impact consumpotion of energy [5]. Reducing energy consumption is urgent priority in the building sector both domestic and commercial [5]. Improving energy efficiency by imparting behavioural training use of renewable energy and practicing low-cost measures for energy conservation [6], transparency of energy data, and digitalisation of the energy market will strengthen the energy conservation program [7]. The behaviour pattern of energy users has considerable potential adjustments for utility savings [7]. Heating and cooling costs contribute to an average home's utility bills [8]. Reducing the intensity and frequency of heating and cooling can result in considerable savings [3]. The paper includes two case studies undertaken at two

10 □ ISSN: 2963-6272

different facilities on air-conditioning applications to measure the impacts of low-cost energy conservation measures low-cost energy conservation measures (LCECM) training transfer in actual operations [4].

## 2. LITERATURE REVIEW

If well-structured, tailor made LCECM training is given to the building occupants. Suppose the management provides a conducive working atmosphere. In that case, the building occupants can improve their energy usage behaviour by practising the learnt tips and guidelines, leading to efficient utilisation of energy as a whole for the building [9]. LCECM is something that most of us know but gets overlooked or ignored due to our preconceived mindset of thinking it to be insignificant [10]. However, it can easily be practised daily if it becomes a habit [11]. The government of India has initiated energy conservation building code (ECBC, 2016) [12] to improve the energy index of any building through such LCECMs, but it is left optional and not obligatory [13]. Suppose its implementation is mandated under ECBC as mandatory. It can help reduce energy usage daily in the Indian Commercial Building Sector, leading to saving cost and energy and the environment through operational excellence [14]. The impact of training transfer (T.T) on Energy Conservation: The effect of transfer of training can be done through some Dos and Don'ts instructions [15], [16]. The analysis was done after collecting feedback from the participants through questionnaires about their intentions of applying the instructions for energy conservation [16]. There is always a gap between choosing to do an action and action [17]. Therefore, the studies were done mainly indirectly, but there is a need for direct measurement in actual application to see the substantial impact [18]. Saving is daily at the consumer's end [17].

#### 3. METHODOLOGY

Actual field data on air-conditioning (AC) applications were measured over 90 working days divided into three groups of 30 days each at two different facilities to assess the actual impact of LCECM training transfer on energy conservation. The electric meter readings were taken before and after LCECM training by IAEMP trainers on given to the participants during the same months but in subsequent years. Therefore, the temperature difference did not impact the measured readings. The temperature variation was  $3^{\circ}$ C ( $30^{\circ}$ C to  $33^{\circ}$ C) over these 90 working days for the readings before and after the LCECM training. Measurements were recorded in an excel sheet. Each of these groups had 30 working days of data. Data analysis was done as per international performance measurement and verification protocol – A ("IPMV Protocol A"), and the formula below used is to determine the quantum of savings.

Savings = (Baseline Period Energy – Reporting Period Energy) ± Adjustments."

The analysis result was further analysed by t-Test using SPSS software.

Field data in the air-conditioning application were measured at two facilities: one in a food court and another at the dining hall. The facility owners allowed the researchers to collect the data with the restriction of only the existing measuring mechanism. Data were measured for 90 working days. Data were recorded in three groups, each consisting of 30 working days. Actual energy consumption data were recorded before and after the LCECM training by facility engineers in consultation with the researcher. Data before the training is considered as the baseline period energy. Data after the training was recorded with the increased air-conditioning set temperature and reduced operating time without compromising the occupants' comfort level and considered as reporting period energy. The deviation in time and temperature was done so that there were no complaints from the facility users about any compromise with their comfort level. The comfort level is not compromised by placing a complaint box with sufficient visibility and announcement. Moreover, there were no complaints about both the facilities. The study ensured that climatic conditions on air-conditioning concerning ambient temperature had no adverse impact on meter reading see Table 1. The ambient temperature varied from 33°C to 30°C from September to January.

Table 1. Details of buildings and meter readings

| Tuble 1. Details of culturings and meter readings |                           |                       |  |  |  |  |  |
|---------------------------------------------------|---------------------------|-----------------------|--|--|--|--|--|
| Site/building under study                         | SNP complex (site 1)      | CSSR corp (site 2)    |  |  |  |  |  |
| Location                                          | Food court                | Dining hall           |  |  |  |  |  |
| Area (Sq. Ft)                                     | 8000                      | 600                   |  |  |  |  |  |
| Capacity of AC (TR)                               | 358                       | 25                    |  |  |  |  |  |
| Duration of readings                              | 3 Sept 2017 - 10 Jan 2018 |                       |  |  |  |  |  |
|                                                   | 3 Sept 2018 - 10 Jan 2019 |                       |  |  |  |  |  |
| Average Ambient Temp.                             | 33° C to 30° C            |                       |  |  |  |  |  |
| Running Hours                                     | 6.30 AM to 9 PM           | 12.30 PM to 2.30 PM   |  |  |  |  |  |
| Condition for Meter Reading                       | Before LCECM Training     | Before LCECM Training |  |  |  |  |  |
|                                                   | After LCECM Training      | After LCECM Training  |  |  |  |  |  |
| Calculation basis                                 | Average of 30 Days        | Average of 30 Days    |  |  |  |  |  |

## 4. RESULTS AND DISCUSSION

To study the impact of off-setting the air-conditioning set temperature and optimising the air-conditioning running hours, without compromising the occupants' comfort level, on energy consumption is done at two sites. The air-condition running hour was optimised and reduced by 30 minutes in 14.30 hours. The air-conditioning set temperature was optimised by increasing the set temperature by 1°C. Energy consumption data before and after LCECM training was compared for energy saving. The air-condition running hour was optimised and reduced by 20 minutes in 2 hours operation, and the air-conditioning set temperature was optimised by increasing the set temperature by 2°C. Ten ceiling fans that were not used earlier were also kept ON during the post LCECM training meter reading Table 2. Before and after LCECM training, energy consumption data was compared for energy saving [Savings = (Baseline Period Energy – Reporting Period Energy) ± Adjustments, Ref: IPMVP – A, Table 3].

ISSN: 2963-6272

Table 2. t-Test on LCECM-A outcome

| Paired sample statistics |              |         |    |                |                 |  |  |
|--------------------------|--------------|---------|----|----------------|-----------------|--|--|
|                          |              | Mean    | N  | Std. Deviation | Std. Error Mean |  |  |
| Pair 1                   | SNP_Before   | 3.2152  | 90 | .19223         | .02026          |  |  |
|                          | SNP_After    | 2.5786  | 90 | .16936         | .01785          |  |  |
| Pair 2                   | CSSRP_Before | 14.7006 | 90 | .04656         | .00491          |  |  |
|                          | CSSRP_After  | 11.6524 | 90 | .10449         | .01101          |  |  |

Table 3. Savings as per IPMVP-A

| racie s. savings as per in iti vi ii                 |               |                |               |  |  |  |  |
|------------------------------------------------------|---------------|----------------|---------------|--|--|--|--|
| Average daily power consumption before training      |               |                |               |  |  |  |  |
| Study site number                                    | First 30 days | Second 30 days | Third 30 days |  |  |  |  |
| 1 (MWh)                                              | 3.24          | 3.21           | 3.24          |  |  |  |  |
| 2 (KWh)                                              | 14.72         | 14.7           | 14.68         |  |  |  |  |
| Average daily power consumption after training (MWh) |               |                |               |  |  |  |  |
| Study Site Number                                    | First 30 days | Second 30 days | Third 30 days |  |  |  |  |
| 1 (MWh)                                              | 2.68          | 2.57           | 2.5           |  |  |  |  |
| 2 (KWh)                                              | 11.72         | 11.68          | 11.55         |  |  |  |  |
| Daily Average Savings (MWh)                          |               |                |               |  |  |  |  |
| 1 (MWh)                                              | 0.55          | 0.64           | 0.7           |  |  |  |  |
| 2 (KWh)                                              | 3             | 3.02           | 3.12          |  |  |  |  |
| Daily Average Savings %                              |               |                |               |  |  |  |  |
| 1 (MWh)                                              | 17.1          | 19.9           | 21.7          |  |  |  |  |
| 2 (KWh)                                              | 20.4          | 20.6           | 21.3          |  |  |  |  |

Daily savings for the first, second and third 30 days were 0.55 MWh, 0.64 MWh and 0.7 MWh, respectively. This corresponds to 17.1%, 19.9%, and 21.7% energy savings on the first Site. While on the second Site, the daily savings for the first, second and third 30 days were 3 KWh, 3.02 kWh and 3.12 kWh, respectively. This corresponds to 20.4%, 20.6%, and 21.3% energy savings. To identify the energy-saving impact on the output by using IMPV protocol through meter reading, the researcher checked it statistically by applying t-Test and analysing it using SPSS software. The result as shown in Table 4 is highly significant, which justifies the analysis report of IPMVP -A. Savings at both Sites understudy as highlighted in Figure 1.

Energy consumption data before and after LCECM training was compared for energy saving on both sites. On the first Site, the air-condition running hour was optimised and reduced by 30 minutes in 14.30 hours operation. In addition, the air-conditioning set temperature was optimised by increasing the set temperature by  $1^{0}$ C. Daily savings for the first, second and third set of 30 days were 0.55 MWh, 0.64 MWh and 0.7 MWh, respectively. This corresponds to 17.1%, 19.9%, and 21.7% energy savings. On the second Site, the air-condition running hour was optimised and reduced by 20 minutes in 2 hours operation. The air-conditioning set temperature was optimised by increasing the set temperature by  $2^{0}$ C. Ten numbers of ceiling fans that were not used earlier were also kept ON during the post LCECM training meter reading. Daily savings for the first, second and third 30 days were 3 KWh, 3.02 kWh and 3.12 kWh, respectively. Resulting in 20.4%, 20.6%, and 21.3% energy savings. Direct Meter readings show 17.1% – 21.7% highlighting monthly energy savings in an air-conditioning application. The energy-saving is on two counts. Firstly, by increasing the air-conditioner set temperature by 1°C. Secondly, by reducing the air-conditioner 'Switch ON' duration by 20 minutes, without any compromise to the comfort level of the occupants. Field measurements were first analysed using IPMVP Protocol – A and then t-Test to confirm the actual savings.

|        | Table 4. Paired Samples Test |   |         |                   |                    |                                           |         |         |    |                 |
|--------|------------------------------|---|---------|-------------------|--------------------|-------------------------------------------|---------|---------|----|-----------------|
| ·      | Paired Differences           |   |         |                   |                    |                                           |         |         |    |                 |
|        |                              |   | Mean    | Std.<br>Deviation | Std. Error<br>Mean | 95% Confidence Interval of the Difference |         | t       | df | Sig. (2 tailed) |
|        |                              |   |         |                   |                    | Lower                                     | Upper   |         |    |                 |
| Pair 1 | SNP_Before<br>SNP_After      | - | .63667  | .24468            | .02579             | .58542                                    | .68791  | 24.685  | 89 | .000            |
| Pair 2 | CSSRP_Before<br>CSSRP_After  | - | 3.04818 | .09893            | .01043             | .3.02746                                  | 3.06890 | 292.289 | 89 | .000            |

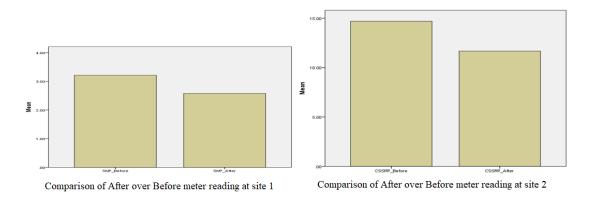



Figure 1. Comparison of after over before meter reading

## 5. CONCLUSION

LCECM training, if designed and executed in-house by the organisation, then does not cost any money to the organisation, but if the same is done by engaging an expert from the industry, then it costs a negligible amount of money which can be recovered from the savings in organisation's monthly energy bill in few months. Therefore, the monetary burden to implement such energy conservation measures is minimal and affordable by any organisation. The more significant impact is building a work culture that will impact the organisation. The same will be carried out, practised, and encouraged by the employees wherever they go after working hours, like public places and their residents. The cumulative impact will be a change in energy usage behaviour in the country at large in a few years' time, leading to energy conservation and a positive impact on the environment and government exchequer for a reduction in energy import bills.

## **LIMITATIONS**

The present study follows the training provided by IAEMP. The energy conservation measurement is made with limited facilities and restrictions imposed by the respondents.

# REFERENCES

- R. Tyagi, S. Vishwakarma, K. K. Singh, and C. Syan, "Low-cost energy conservation measures and behavioral change for sustainable energy goals," in *Affordable and Clean Energy*, 2021, pp. 831

  –843, doi: 10.1007/978-3-319-95864-4\_155.
- [2] P. K. Painuly, R. Tyagi, S. Vishwakarma, S. K. Khare, and M. Haghighi, "Energy supply Using nexus approach for attaining sustainable development goal 7," in *Affordable and Clean Energy*, 2020, pp. 1–12, doi: 10.1007/978-3-319-71057-0\_84-1.
- [3] L. M. Janos, Students energy saving behavior case study of University of Coimbra. Universidade De Coimbra, 2011. [Online]. Available: https://core.ac.uk/download/pdf/19132719.pdf.
- [4] B. Biswas, S. Mukherjee, and A. Ghosh, "Conservation of energy: a case study on energy conservation in campus lighting in an institution," *International Journal of Modern Engineering Research (IJMER)*, vol. 3, no. 4, pp. 1939–1941, 2013.
- [5] X. Xu, "Leveraging human-environment systems in residential buildings for aggregate energy efficiency and sustainability," 2013.
- [6] "IPEEC 2017 report highlights progress in energy efficiency," 2018. [Online]. Available: https://sdg.iisd.org/news/ipeec-2017-report-highlights-progress-in-energy-efficiency/
- [7] R. J. Sutherland, "No cost' efforts to reduce carbon emissions in the U.S.: An economic perspective," The Energy Journal, vol. 21, no. 3, pp. 89–112, Jul. 2000, doi: 10.5547/ISSN0195-6574-EJ-Vol21-No3-4.
- [8] R. Tyagi and A. Paul, "ROI based training framework for DISCOMs for rural electrification," *Water and Energy International*, vol. 64, no. 11, pp. 33–39, 2022.
- [9] S. S. Ali and D. R. Tyagi, "The role of energy conservation building code 2017 in Indian energy policy," *International Journal of Recent Technology and Engineering (IJRTE)*, vol. 9, no. 1, pp. 1799–1806, May 2020, doi: 10.35940/ijrte.A2212.059120.
- [10] S. S. Ali, R. Tyagi, and R. Chauhan, "Energy conservation project funding in commercial building: an expenditure or investment?,"

International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 10, no. 1, pp. 504–513, Mar. 2019, doi: 10.11591/ijpeds.v10.i1.pp504-513.

ISSN: 2963-6272

- [11] S. Vishwakarma and R. Tyagi, "Smart cities' success how well utility companies are prepared," in 3rd Smart Cities Symposium (SCS 2020), 2021, pp. 149–156, doi: 10.1049/icp.2021.0949.
- [12] R. K. Tyagi and N. Vasiljevienė, "The case of CSR and irresponsible management practices," *Competitiveness Review: An International Business Journal*, vol. 23, no. 4/5, pp. 372–383, Jul. 2013, doi: 10.1108/CR-03-2013-0031.
- [13] Energy conservation building code 2017. Government of India Ministry of Power, 2017.
- [14] S. Vishwakarma and R. Tyagi, "Post-reforms training needs of frontline managers in Indian power distribution companies," International Journal of Energy Sector Management, vol. 11, no. 3, pp. 416–425, Sep. 2017, doi: 10.1108/IJESM-02-2016-0001.
- [15] A. Mahamadi and S. Sastry, "Bond graph models for human behavior," in 2016 Conference of Basic Sciences and Engineering Studies (SGCAC), Feb. 2016, pp. 110–115, doi: 10.1109/SGCAC.2016.7458014.
- [16] S. C. Staddon, C. Cycil, M. Goulden, C. Leygue, and A. Spence, "Intervening to change behaviour and save energy in the workplace: A systematic review of available evidence," *Energy Research & Social Science*, vol. 17, pp. 30–51, Jul. 2016, doi: 10.1016/j.erss.2016.03.027.
- [17] R. Hledik and A. Faruqui, "Valuing demand response: international best practices, case studies, and applications," *Prepared for EnerNOC*, pp. 1–35, 2015.
- [18] R. J. Sutherland, "Market barriers to energy-efficiency investments," The Energy Journal, vol. 12, no. 3, pp. 15–34, Jul. 1991, doi: 10.5547/ISSN0195-6574-EJ-Vol12-No3-3.