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In the restructured electricity market, microgrid (MG), with the incorporation
of smart grid technologies, distributed energy recourses (DER), pumped-
storage-hydraulic (PSH) unit and demand response program (DRP), is a
smarter and reliable electricity provider. DER consists of gas-turbines and
renewable energy sources such as photovoltaic systems and wind-turbines.
Better bidding strategies, prepared by MG operators decrease the electricity
cost and emission from upstream grid and conventional and renewable energy
sources. But it makes inefficient due to very high intermittent nature of
renewable energy and higher rate of outages. To solve these issues, this study
suggests non-dominated sorting genetic algorithm-11 (NSGA-I1) for optimal
bidding strategy considering pumped hydro energy storage and DRP based on
their outage probabilities.
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NOMENCLATURE
PSP : Pumped storage plant
I : Cost function
Fg : Emission function
agi» bgi, Cgi : Cost coefficients of i th gas turbine
a6ir Beir Yai : Emission coefficients of i th gas turbine
UR;,DR; : Ramp-down and ramp-up rate limits of i th gas turbine
Pgis : Output power of i th gas turbine at time ¢t
pmin, pmax : Min™ and Max™ generation limits for i th gas turbine
Pyriat : Power procured from upstream grid at time ¢t
cgrid, : Grid electricity price at time t
egrid, : Emission of grid power at time ¢t
Pyt : At time t wind power available of j th wind turbine
PJV"}", il : Min™ and Max™ generation limits for j th wind turbine
Pyrj : Wind power rated of j th wind turbine
dy;j : Direct cost coefficient for the j th wind turbine
Vin : Cut in speed of wind
Vout : Cut out speed of wind
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1. INTRODUCTION

: Rated speed of wind

: Forecasted speed of wind at time ¢t

: Weibull pdfs scale factor and shape factor respectively.
: Mean and standard deviation for lognormal PDF

: Mean and standard deviation for normal PDF

: Power o/p from k th solar PV plant at time ¢

: Equivalent rated power o/p of the PV plant

: Solar irradiation forecast

: Solar irradiation in standard environment

: Certain irradiation point.

: Direct cost co-efficient for the k th solar PV plant

: Penalty cost and reserve cost for the j th wind turbine

: Penalty cost and reserve cost for the k th solar PV plant
. At time t, power generation of [ th PSP

: At time t, pumping power of [ th PSP

: Min™ and max™ generation power limits of | th PSP

: Min™ and max™ pumping power limits of [ th PSP

. At time t, discharge rate of [ th PSP

: At time t, pumping rate of [ th PSP

: Total amount of water spent for generation of [ th PSP
: Total amount of water pumped of [ th PSP

: Net amount of water spent by [ th pumped storage hydraulic unit during

operation cycle

: Volume of water in upper reservoir of [ th PSP at time ¢t

: Min™ and max™ limits of upper reservoir storage of [ th PSP

: Specified volume of water at starting and final in upper reservoir of [ th PSP
: Max™ increased load at any hour (MW)

: Forecasted base load at at time ¢

: Percentage of forecasted based load participated in DRP at at time ¢t

: Maximum percentage of base load that can participate in DRP

: Amount of increased load at timet

: Shiftable load at time ¢

: Failure rate (failure times/year)

. Limit of rate of failure of solar and wind unit (failure times/hour)

: Mean time to repair

: Mean down and up time of i th gas turbine

: Rate of forced outage

: Forced outage rate due to repairable, aging, and weather dependent failure
: At time t, forced outage rate of j th wind turbine and k th solar power plant
: Failure probability

:'1"if j th wind power unit is scheduled on at time t and otherwise '0".
:'1"if k th Solar PV plant is scheduled at time ¢t and otherwise '0'

: '1"if ith gas turbine is scheduled on at time ¢ and otherwise '0'

: On and off condition of i th gas turbine before (t — 1)th time

: Time index and scheduling period

: Set containing time intervals where PSP operate in generation mode

: Set containing time intervals where PSP operate in pumping mode

: No. of thermal generating units

: No. of wind turbine

: No. of solar pv plant

: No. of psp

Microgrid (MG) is the core component of a smart grid by providing efficient energy system with
enhanced power quality, reliability and economy to grid-independent end user sites. MGs continue to operate
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with improved integration of recent smart grid technologies, disseminated conventional and renewable energy
sources, competent pumped-storage-hydraulic (PSH) unit and boost customer participation through demand
side management [1], [2]. Thus, MG can purchase power from upstream grid, distributed energy sources with
the advantage of time-varying electricity prices to meet its demand. But, the variability and intermittency of
renewable energy sources and their outages are the main factors which challenge the MG operators to buy
electricity at a price variable from a day-ahead market so that cost and emission are optimized simultaneously.
Hence, to bid for electricity in the day-ahead market, MG should plan an optimal bidding strategy to buy power
from upstream grid with demand response program (DRP) taking into consideration the uncertainty and
outages of the sources of renewable energy.

To reduce price of energy in the electricity market which is deregulated and to enhance the reliability
of the power system, MG operators give emphasis to the best bidding policy and this has been discussed in the
literature [3]-[11]. Lim and Kim [3], a distributed load-shedding scheme-based bidding strategy is designed to
maximize the profits of power consumers through g-learning algorithm. Optimal bidding scheme for MG has
been structured using stochastic programming in [4] for power scheduling and profit maximization, and two-
stage stochastic programming in [5]. A bi-level programming based energy bidding strategy for MG has been
proffered in [4] in which stochastic model of uncertain renewable energy sources and loads are considered.
Another stochastic optimal bidding strategy is framed in [6] and solved utilizing mixed-integer linear
programming (MILP). Ferruzzi et al. [7], a risk management based day-ahead bidding strategy for grid-tied
residential MG has been proposed. Robust optimization based day-ahead bidding approach has been employed
in [8] for maximizing the profit from joint energy and spinning reserve market. Nguyen and Le [9], DRP is
introduced in bidding operation of MG to facilitate customers with active participation with MG aggregator
and system operator. A hierarchical market model has been design in [10], where MG aggregator involves
small-scale MGs in DRP assisted real-time balancing bidding. Another DRP aided short-term bidding
framework for MG has been represented in [11] as robust optimization based best cost model.

The gas turbine discharges many pollutants like (SOx), (NOx), and (CO2) into the ambiance for
electric utilities, ambiance in reducing greenhouse gasses is one of the important confronts. Clean Air Act in
1990 was intended for reducing greenhouse gasses and acid rain. So for that ,the gas turbine must decrease its
sulfur oxides (SOx) and (NOx) level of emission [12]. Today’s civilization wants safe and sufficient electricity
not only cost-effective, but with minimum stratum of greenhouse gasses.

A variety of tactics are suggested to decrease the ambience greenhouse gasses [13]. Dispatching
considering emission is preferable among these. The qualms related to renewable energy resources (RER) is
modelled based on historical data and forecast results [6], [14]. Again, the bidding strategies in [9]-[11]
incorporate DRP to only relief load during peak load or expensive periods. However, DRP incorporation during
outages of distributed energy resources (DERS) can greatly secure the MG reliability and operation costs.

Taking into account the aforementioned facts, this paper proposes a day-ahead optimal bidding
strategy for MG based on economic environmental dispatch (EED) with DRP considering outages of
intermittent renewable energy sources [15]. The probabilities of uncertainties of renewable energy sources are
determined using various well established probability distribution functions (PDF), viz., lognormal PDF
(LPDF) for solar photovoltaic (PV) units, weibull PDF (WPDF) for wind turbine (WT) units [15]. All the
uncertain scenarios are mapped non-repeatedly within the forecasted upper and lower boundaries [16].
Moreover, penalty cost for underestimation and reserve cost for overestimation of RER outputs is imposed to
main cost to encourage MG to decide accurate power generation dispatch during bidding [15]. Along with the
intermittent nature of RERSs, remoteness and harsh operating circumstances of RER plants make it more prone
to forced outages. It is observed that, the outage probabilities of RER units also trail some specific mathematical
formulations/PDFs depending upon different types of failures, viz, repairable failure, aging failure and weather
dependent failure [17]-[19] discusses economic dispatch problem using different computational intelligent
techniques. Considering the uncertainty and outage modeling of RERS, the MG operator performs the EED to
settle the optimal power dispatch schedules of generators and pumped-storage-hydraulic (PSH) unit and
electricity purchasing in day-ahead market to facilitate its bidding optimization. Here, NSGA-I1 is suggested
to solve EED problem.

2. PROBLEM FORMULATION

The proposed MG is considered to be grid connected and consists of gas turbines (GTs), solar PV
plant, wind power generating units, pumped-storage-hydraulic (PSH) unit and loads. Day-ahead whether data
and electricity prices are assumed to be known from historical data and other factors. In order to formulate the
bidding strategy, the MG operator has to decide the energy procurement level from upstream grid and GTs,
solar PV plant, wind turbine and PSH generation amount to optimize total cost and emission simultaneously
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while considering associated constraints. The subsequent objective functions with constraints were taken for
description in the problem formulation with outage probabilities and demand side management of RER units.

2.1. Uncertainty modelling
2.1.1. Distribution of probability of solar power plant and wind turbine

Due to the uncertainty and intermittency, the solar power plant and wind turbine are difficult part to
integrate into an MG even if it is important. The underestimation of renewable power results wastage of surplus
energy while the overestimation leads to large reserve capacity margin which imbalances the steady state
security of the MG, if demand arises, both add together to the total generation and operation costs of MG in
energy bidding planning. So, many researchers have exercised different uncertainty modelling to evaluate
penalty cost for underestimation and reserve cost for overestimation like lognormal, weibull, beta, and gumbel
probability distribution functions (PDFs), by lognormal and weibull PDFs it is found that solar irradiation and
speed of wind to be well trailed respectively as in (1) and (2) [15], [17].

_{"(I"G‘”Log)z}

_ 1 2XHiL g2

fG(G)—WXG forG >0 (1)
NB-D (b

Hw) =(E)x (&) xe @ foro<v <o @)

2.1.2. Model of wind power
At time t, the output power [17] of ] th wind turbine for a given wind speed is given as (3):
Ywt—Vin
Pyjc =0, for vy, < v and P, jp = Pyrj X (m)
Pyjt = Pyrj X (%), forv; < v, < v, (3)
ijt = Pwrjl for Vr S Ve < Vour

2.1.3. Model of solar power
At time t, the output power [20] from K th PV solar plant at time t for a given irradiation G is

given by (4):
GZ

Ppyie = Pgrie X (G
stdftc

Ppyie = Por (Ld)! forG = R,

Gst

),for0<G<RC 4

2.1.4. Solar power probabilities in PV power plant
Probability o PV power is equal as the value of corresponding solar power irradiation probability
in (5):

fov(Ppy) = f6(G) (5)
2.1.5. Wind turbine power probabilities

Wind power probabilities for discrete zones, i.e., for 1%t and 3" case of (3), can be calculated using (6)
and (7) respectively [14].

vin)A vour) B
FoP)lpyeo = 1— e Ca) 4 7 (2) ©
Fo Bl p, = —e () — o2 o
The probability for WT power in the continuous region as second case in (3) can be calculated as (8).
fw(By) = %}:‘:ir") X [vin + :;:/Vr X (v, — vin)](ﬁ_l) X e ¢ (®)
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2.2. Modelling outage of wind turbine and solar power plant

Frequently renewable sources are facing forced outage due to harsh environmental condition, Aging,
weather dependency and repairable failure are the three factors on which the forced outage modelling depends.
For any power system, the repairable forced outage rate is given as (9) [15].

FXMTTR
= 9
pRepalr 8760 ( )

During the service time T , usually the component aging failure model follows the normal PDF the aging
failure rate is calculated as (10).

2
_(T_A“Norm)

Z
. = — — X e 2XONorm 10
pAgmg ONormXVZXI ( )

For a time period of? t, by exponential distribution as (11), the weather dependent failure model is modelled
as follows:

Pweather = 1- e_AXAt (11)

hence, multi-factor independent outage is involved; using the union set concept, the outage rate can be
evaluated. For any renewable unit the the forced outage rate can be given by (12).

P = Pre pair U pAging U Pweather = PRe pair + pAging + Pweather — PRe pair X pAging -
pAging X Pweather — Pweather X PRe pair — Pre pair X pAging X Pweather (12)

2.3. Objective functions and constraints

For optimal bidding, the objective functions i.e., simultaneously total cost and emission are optimized
considering every operational constraint. Total cost is the summation of energy cost purchased from grid, fuel
and operation cost of gas turbines and operation cost of solar PV plants and wind turbines during entire time scale.
Total emission is the summation of emission corresponding to purchased grid power and emission from gas turbines.
— Cost

Cost function of fuel of the gas turbine is expressed as a quadratic function of its power output. The
operational costs of the solar PV units and WT units consist of reserve cost for overestimation direct cost,
penalty cost for underestimation on dispatchable solar power and wind power respectively. The total cost is
the summation of fuel cost of GT power, cost of power purchased from grid and operational cost of PV solar
plant and wind turbine.

Ng

T
Fe = Z lz{(aci + bg; X Pgir + cgi X P&i) X Sgie} + (cgridy X Pyrig )
t=1|1i
NW

i=1

+Z{dwj X ijt + Owjt(ijt) + ijt(ijt)} X Swjt
j=1

+Zg§‘f{dwk X Ppyt + Opvice (Prvie) + Upyice (Pryice)} X Spyie (13)

11 pwjt < Fw
0, otherwise

L ppvie < Fpy

wher = )
ere Swje { 0, otherwise

and Spyye = {

On dispatchable wind power, for overestimation reserve cost and for underestimation penalty cost is modelled
respectively in (14)-(15).

wj fw( )
Owjt(ijt) = Owj X f:;'ry]éri g (ijt - y) (14)
ijt(ijt) = uwj X f:x}]jtt f(y - ijt) X fw(y) (15)

Reserve cost for overestimation and penalty cost for underestimation for dispatchable solar power is modelled
respectively in (16)-(17).
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PPthfpv(x)

Opyke(Ppyie) = Opyi X f min (Ppyke — X) (16)
PRYe py ()
Upvie (Ppvke) = Upyy X fp:g:t PV = Ppyie) 17)

—  Emission

The ambience green house gases such as SOx, NOx, and CO2 produced by gas turbine is modelled
separately. But, for evaluation purpose, total emission of green house gases is given as sum of a quadratic
function, while the total emission is the summation of emission from gas turbine and emission of power taken
from upstream grid.

Fp = ?:1[2?:1{(%1‘ + Bei X Pgir + Vei X P&it) X Sgic} + (egrid, X Pyrig )] (18)

2.3.1. Power balance constraint

Limit of power balance is depicted in (19)-(20), which states that the power procured from grid, GTs,
WTs, PVs, and PSH unit will be scheduled according to the load considering DRP. Assuming that, when load
is curtailed due to DRP, at that time Ls, = 0 and, when load is shifted to base load demand, at that time no
load is curtailed.

Npy Npump
grld t + Z(PGLL' X SGLL') + Z(PW]L' X SW]t) + Z (PPth X SPth) + Z Pghlt
=(1- DRt) X Lpgset + Lst, t € Tyen (19)
Npy Npump
grld t + Z(PGLL' X SGLL') + Z(PW]L' X SW]t) + Z (PPth X SPth) Z phlt
(1 - DRt) X LBase,t + LSt, t E Tpump (20)

This power procurement from upstream grid is limited by power transfer capacity of line linking the MG to
main grid as (21).

0<P rtdt = grﬁil; (21)

2.3.2. Pumped-storage-hydraulic (PSH) unit constraints

Veesit+1) = Vresit + Qphlt(P phzt):l € Npumpr t € Tpump (22)
Viesi+1) = Vresie — Qgnie (P, hlt)rl € Npump, t € Tyen (23)
Pghl < Pyt < Pgri™ L€ Npympr t € Tyen (24)
P < Pope < PI* 1€ Nypump, t € Tyump (25)
Viesh < Veesie < VYoot L€ Nyymp, t €T (26)

In this problem, net amount of water utilized by PSH unit is equal to zero as the initial and final volume of
water of the upper reservoir of the (PSH) unit are taken,

— start _ yrend
Vres,lo - Vres,lT Vres 1 Vres l (27)

Qnet,spent,l = Qspent,TOT,l - qump,TOT,l
= ZtETgen Qghlt(Pghlt) - ZteTpump Qphlt (Pphlt) =0 (28)

2.3.3. Generation limits of gas turbine
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P < Poyy < PIX 1€ NG, t €T (29)

2.3.4. Ramp rate limits of gas turbine
Peit = Pgit-1) S UR;, > i €ENg, t €T
Pgict—1) — Pgie < DRy, > 1 € Ng,t €T (30)

{(Ton,i,(t_l) — MUT;) X (Sie—1) — Sgit) = 0,i E NG, t €T (1)

(Tosrict—1) — MDT:) X (Sgie — Sit-1)) = 0,i € Ng, t €T

Demand side management (DSM) programs gives many merits like, boosting the power system
security reducing the cost, [21]. Programs are categorized as strategic conservation demand response. Here,
DSM is utilized and is modeled according to time-of-use (TOU) program [11], fixing the net amount of load
demand, some percentage of load demand is shifted from peak or expensive period to off peak or cheap period.
Hence, the load curve flattens and the probable operation cost trims down. Numerical model of TOU program
is given by (32) and constrained by (33)-(36).

Ly = (1= DR) X Lpgse + Lyt (32)
YioiLoe = X1y DR X Lpages (33)
Line, = Incy X Lpggey (34)
DR, < DR™*,t € T (35)
Inc, < Inc™¥*,t €T (36)

3. NONDOMINATED SORTING GENETIC ALGORITHM-11

To contend with multi-objective optimization problems, Srinivas and Deb [22] ascertained
nondominated sorting genetic algorithm (NSGA). Nondomination is utilized as grading criterion of solutions,
and fitness distribution is utilized for diversification control in the investigated space. To fitness distribution
parameters, NSGA is extremely responsive, Deb et al. [23] pioneered nondomoinated sorting genetic algorithm-
Il (NSGA-I1I), which gives further dependable solution quickly than its antecedent. Due to limitation in space,
detailed description of NSGA-II is not mentioned here. The flow chart of NSGA-I1I is shown in Figure 1 (see
in Appendix).

4.  SIMULATION RESULTS

The proposed NSGA-II based a day-ahead optimal bidding strategy for MG based on economic
environmental dispatch (EED) with DRP considering outages of intermittent renewable energy sources is
performed using numerical simulation. Simulation outcomes of the test system is used to match the efficacy of
the suggested NSGA-II with strength pareto evolutionary algorithm 2 (SPEA 2) [24].

The proposed grid-connected MG model has three gas turbines, one solar PV unit, one wind turbine
and one PSH unit and their data are shown in Table 1, Table 2, and Table 3 respectively in the appendix. Day-
ahead forecasted loads and electricity prices for 24 consecutive hours are tabulated in Table 4. 15% of 16" and
17" hour load is shifted to 51" and 6™ hour and 20% of 19" hour load is shifted to 9" hour during DSM. The
emission of grid power is considered 50Kg/MWh. The PSH plant has the following characteristics:

Generating mode: Qg is positive when generating, Py, is positive and 0 < Py, <6 MW,
Qght(Pght) = 4 + 2Py, acre-ft/hr. Pumping mode: Q. is negative when pumping, P, is negative and
—6 MW < Py < 0 MW, Qppe(Pype) = —12acre-ft/h with Py, = —6 MW.

Operating limitations: the pumped hydro plant will be permitted to work only at -6 MW while
pumping. Reservoir starts at 160 acre-ft and must be at 160 acre-ft at the end of the 24 hours. The water inflow
rate is neglected without considering spillage.

Upper and lower forecast limits of solar irradiation and velocity of wind are given in Figures 2(a) and
2(b) respectively. At 16™ hour a sudden change in speed of wind is noticed in Figure 2(b). Due to this high
wind speed, it results into turbulent weather condition which causes failure in renewable unit? the failure
probabilities, for PV and WT units, can be fetched from weather dependent historical data which are portrayed
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in Figure 2(c). Forced outage rates of PV and WT units are shown in Figure 2(d) correspondingly. From
Figure 2(d), it is evident that, PV unit has high failure rates at 16" and 17" hour and WT unit has high failure
rates at 16", 17", and 18" hour. 17" or/and 18" hour is required for repairmen of PV and WT units respectively.

Total cost and emission are the two conflicting objective functions. To elucidate contradictory
relationships amongst the objective functions, each objective function i.e., total cost and total emission is
minimized separately by utilizing real-coded genetic algorithm (RCGA). Here, the population size, maximum
number of iterations, crossover and mutation probabilities are chosen as 100, 200, 0.9, and 0.2 respectively [25].

NSGA-II has been pertained to optimize two objectives i.e., total cost and total emission objectives
simultaneously. For comparison, SPEA 2 has been pertained for solving this problem. In case of NSGA-II and
SPEA 2, the population size, maximum number of iterations, crossover and mutation probabilities are taken as
20, 30, 0.9, and 0.2 respectively.
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Figure 2. These figures are; (a) upper and lower forecast limits of solar irradiation, (b) upper and lower
forecast limits of wind speed, (c) failure probabilities (?) for PV and WT, and (d) forced outage rates of PV
and WT units

The gas turbine-wind-solar-pumped storage generations and power procured from upstream grid
acquired from economic dispatch and emission dispatch are summarized in Tables 1 and 2 respectively. The
gas turbine-wind-solar-pumped storage generations and power procured from upstream grid acquired from
economic emission dispatch utilizing NSGA-II and SPEA 2 are summarized in Table 3 and Table 4 (see in
Appendix) respectively. The total cost and total emission acquired from economic dispatch, emission dispatch
and economic emission dispatch are summed up in Table 5. Figures 3(a) and 3(b) (see in appendix) reveal cost
and emission convergence characteristics. Figure 3(c) (see in appendix) reveals the distribution of 20
nondominated solutions acquired in the last iteration of suggested NSGA-Il and SPEA2 acquired from cost

and emission objectives optimized simultaneously.

Table 1. Hourly generation (MW) schedule acquired from economic dispatch

Hour Py Pgy Pe3 Py Ppy Pon Poria
1 0.6298 0 15639 5.8212 0 -6.0000 12.9852
2 0.8553 3.0453 0.7363 3.7275 0 -6.0000 14.6356
3 0.3991 1.0051 0.8399 6.0000 0 -6.0000 16.7560
4 0.6081 1.3772 1.6879 6.0000 0 -6.0000 19.3268
5 0.4880 0.2047 1.9993 6.0000 0.1923 -6.0000 28.8158
6 19216 0.7481 27325 6.0000 0.8348 -6.0000 24.3881
7 15856 0.3667 0 6.0000 2.3992 -6.0000 24.6485
8 0.1625 19725 0.3555 5.7430 3.4953 -6.0000 22.2711
9 0.5190 1.1200 3.3573 2.9220 3.9706 2.3230 20.2882
10 0.8907 2.6495 1.5506 4.0779 45148 5.3246 8.9919
11 0.0170 1.4556 0.5235 2.9853  5.3980 52082 13.4123
12 0 0.0240 4.2554 3.2272  5.1496 1.2458  20.0979
13 0.3012 0 0.2509 3.6931 03.6931 4.1066 17.7686
14 22093 1.0051 0.9918 3.6435 3.4621 5.7353  26.9530
15 16945 14396 0.1913 20145 2.0145 29754  20.9221
16 0.3881 0.7093 2.4411 0 0 6.0000 22.7616
17 0.7696 1.8868 1.4992 0 0 3.1149  24.6046
18 22199 2.6392 1.0943 0 0.7651 6.0000 29.2816
19 3.1803 2.0358 3.7213 3.5852 0.0101 2.7308 22.7366

20 16180 29112 4.3674 3.6505 0 46711 26.7818
21 12593 23805 0.3604 3.8269 3.8269 -6.0000 22.1729
22 12503 2.3805 0.3604 3.8269 0 -6.0000 22.1729
23 16118 25635 0.8152 4.0647 0 -6.0000 24.9448
24 0.3996 0.4968 2.5094 3.3909 -6.0000 -6.0000 23.7034
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Table 2. Hourly generation (MW) schedule acquired from emission dispatch

Hour Py Pey Pg3 Py Ppy Pgn Pyria
1 7.0000  8.0000 1.1149 4.2348 0 -6.0000 0.6503
2 6.1038 4.2514 4.4232 3.9685 0 -6.0000 4.2530
3 7.0000 4.8154 6.0059 6.0000 0 -6.0000 1.1788
4 3.9615 5.5252 10.0000  6.0000 0 -6.0000 3.5133
5 7.0000 8.0000 8.3917 6.0000 0.2820 -6.0000 8.0263
6 4.1579 7.7078 6.9339 6.0000 1.1555 -6.0000 10.6700
7 7.0000  8.0000 10.0000  6.0000 2.1760 -6.0000 1.8240
8 3.3406 4.4722 7.9446 6.0000 3.2179 -6.0000 9.0247
9 0 4.4199 6.4004 5.3569 3.9839 6.0000 8.3390
10 3.6391  8.0000 10.0000  1.7040 45179 0 0.1390
11 0 5.7708 8.2316 2.9397 5.4283 6.0000 0.6297
12 3.3376 8.0000 10.0000 0.1225 0.1225 6.0000 1.3240
13 5.0748  5.4475 8.7944 3.2667 4.2871 0 2.6295
14 3.3861 8.0000 10.0000 3.7343 3.6557 0 15.2239
15 7.0000 6.7643 7.0934 3.1759 2.9030 0 45635
16 5.1998  8.0000 10.0000 0 0 6.0000  3.1002
17 7.0000 4.2384 6.1245 0 0 6.0000 8.5121
18 6.7873  8.0000 10.0000 0 0.7848 6.0000 10.4279
19 7.0000  7.1155 7.6116 1.6464 0.0193 6.0000  8.6072
20 4.4799  8.0000 4.3326 4.3861 0 6.0000 16.8014
21 7.0000 5.7954 6.5600 3.0305 0 -6.0000 20.6140
22 5.9080  8.0000 10.0000 3.6751 0 -6.0000 2.4168
23 7.0000 4.8374 9.8673 1.3874 0 -6.0000 10.9079
24 5.4220 8.0000 9.8645 4.4821 0 -6.0000 2.7314

Table 3. Hourly generation (MW) schedule acquired from EED using NSGA-11

Hour Py Pey Pgs i Ppy Pgn Poria
1 2.9849 33890 6.0376 5.3880 0 -6.0000 3.2004
2 43916 4.8276 4.7287 6.0000 0 -6.0000 3.0521
3 55260 4.2543 5.5066 6.0000 0 -6.0000 3.7130
4 3.7725 1.6378 4.6157 5.7529 0 -6.0000  13.2211
5 53743 21891 3.8308 6.0000 05194 -6.0000 19.7865
6 57943 59921 7.5277 6.0000 1.4583  -6.0000 9.8526
7 46254 6.0212 8.6737 6.0000 2.1887 -6.0000 7.4911
8 3.3167 3.9214 4.1157 6.0000 3.4748 -6.0000 13.1714
9 3.7432 5.6613 4.8407 3.9216 3.9872 2.9205 9.4256
10 11587 5.1351 1.8917 3.1512 4.1462 2.0266 10.4904
11 42170 4.1247 3.0509 2.6654 5.3866 4.0886 5.4669
12 3.3202 5.7683 6.3407 1.8956 5.1213 4.0920 7.4619
13 19101 5.0711 3.8029 1.1529 4.4227 5.3794 7.7608
14 49169 4.0195 6.3225 45013 3.3649 5.7586 15.1164
15 27623 56823 51959 19308 3.2481 6.0000 6.6806
16 2.1534 3.6187 6.2732 0 0 0.8184 19.4364
17 4.2556 3.8879 5.5650 0 0 5.7746 12.3919
18 45558 5.1500 6.5900 0 0.9406 6.0000 18.7636
19 27147 3.1687 55892 6.0000 0.1918 2.5038 17.8318
20 27607 4.2326 55113 1.8022 0 2.6334 27.0598
21 5.1978 2.3587 7.0244 1.8975 0 -6.0000 26.5216
22 25099 2.6826 8.4443 4.1604 0 2-6.0000 12.2028
23 1.6348 6.1588 6.7497 3.8893 0 -6.0000  15.5674
24 2.6016 49480 5.6753  2.3559 0 -6.0000  14.9193

Table 5. Comparison of performance

Cost ($)  Emission (Kg)
Economic dispatch 63538 26394
Emission dispatch 217006 8910
EED NSGA-II 130407 16098
SPEA 2 131451 16286

5. CONCLUSION

NSGA-II based day-ahead optimal bidding strategy for MG based on economic environmental
dispatch is proposed in the presence of DRP under outage conditions and uncertainties of renewable energy
sources. The uncertainty related to solar and wind units are modeled using lognormal and Weibull probability
distribution. TOU based DRP is used, especially considering time of outages along with time of peak
loads/prices to enhance reliability of MG and reduce the cost and emission.
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APPENDIX
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| Choose the first member of the first front |

Table 4. Hourly generation (MW) schedule acquired from EED using SPEA 2

Figure 1. Flowchart of NSGA-II

Hour Py Pey Pgs Py Ppy Pgn Pyria
1 2.5427 2.4507 6.7079 5.7131 0 -6.0000 3.5856
2 2.3406 19487 75644 4.2689 -6.0000 -6.0000 6.8774
3 36110 55991 7.3003 6.0000 0 -6.0000  2.4896
4 5.6085 6.2597 2.8790 6.0000 0 -6.0000 8.2528
5 1.8660 4.9910 6.7697 6.0000 0.0015 -6.0000 18.0719
6 37170 23154 23735 6.0000 0.8573 -6.0000 21.3618
7 3.2606 3.4488 23018 6.0000 25002 -6.0000 17.4885
8 1.7427 3.0117 6.5092 4.7685 3.6194 -6.0000 14.3486
9 1.9691 5.7996 5.8071 2.1872 3.8808 3.2319 11.6242
10 41763 2.8650 35324 3.1975 4.6041 56938  3.9310
11 3.1729 2.3437 2.6837 21978 5.4940 3.1735 9.9344
12 3.3695 23701 6.5418 1.8983 5.2217 4.8002 9.7984
13 5.3372 5.0548 4.4428 37490 4.6394 19723  4.3045
14 29497 2.6122 6.3042 3.9209 3.5155 48144  19.8830
15 23080 3.0905 6.2872 3.6466 2.8986 0.3914 12.8777
16 5.2098 4.5483 5.9327 0 0 6.0000 10.6092
17 2.3849 6.6198 7.9512 0 0 2.6639  12.2552
18 22529 7.4168 7.7712 0 0.8893 4.4687  19.2011
19 41608 5.2687 65545 35303 0.0175 56991 12.7692
20 44487 6.6452 7.5509 2.5236 0 5.0874  17.7442
21 23126 3.4898 7.9173 2.0801 0 -6.0000 27.2002
22 5.0339 5.1311 75146 3.8693 0 -6.0000 8.4510
23 2.8586 2.4976 8.0536 3.7064 0 -6.0000 16.8838
24 1.8391 3.8461 6.1609 4.2228 0 -6.0000 14.4311
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Figure 3. These figures are; (a) Cost convergence characteristic, and (b) Emission convergence characteristic

and (c) Pareto-optimal front acquired from the last iteration
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