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 In the restructured electricity market, microgrid (MG), with the incorporation 

of smart grid technologies, distributed energy recourses (DER), pumped-

storage-hydraulic (PSH) unit and demand response program (DRP), is a 

smarter and reliable electricity provider. DER consists of gas-turbines and 

renewable energy sources such as photovoltaic systems and wind-turbines. 

Better bidding strategies, prepared by MG operators decrease the electricity 

cost and emission from upstream grid and conventional and renewable energy 

sources. But it makes inefficient due to very high intermittent nature of 

renewable energy and higher rate of outages. To solve these issues, this study 

suggests non-dominated sorting genetic algorithm-II (NSGA-II) for optimal 

bidding strategy considering pumped hydro energy storage and DRP based on 

their outage probabilities. 
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NOMENCLATURE 

PSP : Pumped storage plant 

𝐹𝐶 : Cost function 

𝐹𝐸 : Emission function 

𝑎𝐺𝑖 , 𝑏𝐺𝑖 , 𝑐𝐺𝑖 : Cost coefficients of 𝑖 th gas turbine 

𝛼𝐺𝑖 , 𝛽𝐺𝑖 , 𝛾𝐺𝑖 : Emission coefficients of 𝑖 th gas turbine 

𝑈𝑅𝑖 , 𝐷𝑅𝑖 : Ramp-down and ramp-up rate limits of 𝑖 th gas turbine 

𝛲𝐺𝑖𝑡  : Output power of 𝑖 th gas turbine at time 𝑡 

𝛲𝐺𝑖
𝑚𝑖𝑛 , 𝛲𝐺𝑖

𝑚𝑎𝑥 : Minm and Maxm generation limits for 𝑖 th gas turbine 

𝛲𝑔𝑟𝑖𝑑,𝑡 : Power procured from upstream grid at time 𝑡 

𝑐𝑔𝑟𝑖𝑑𝑡 : Grid electricity price at time 𝑡 

𝑒𝑔𝑟𝑖𝑑𝑡 : Emission of grid power at time 𝑡 

𝛲𝑤𝑗𝑡  : At time 𝑡 wind power available of 𝑗 th wind turbine  

𝛲𝑤𝑗
𝑚𝑖𝑛 , 𝛲𝑤𝑗

𝑚𝑎𝑥 : Minm and Maxm generation limits for 𝑗 th wind turbine 

𝛲𝑤𝑟𝑗  : Wind power rated of 𝑗 th wind turbine 

𝑑𝑤𝑗  : Direct cost coefficient for the 𝑗 th wind turbine  

𝑣𝑖𝑛 : Cut in speed of wind 

𝒗𝒐𝒖𝒕 : Cut out speed of wind 

https://creativecommons.org/licenses/by-sa/4.0/
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𝑣𝑟  : Rated speed of wind 

𝑣𝑤𝑡  : Forecasted speed of wind at time 𝑡 

𝛼, 𝛽 : Weibull pdfs scale factor and shape factor respectively. 

𝜇𝐿𝑜𝑔, 𝜎𝐿𝑜𝑔 : Mean and standard deviation for lognormal PDF 

𝜇𝑁𝑜𝑟𝑚, 𝜎𝑁𝑜𝑟𝑚 : Mean and standard deviation for normal PDF 

𝛲𝑃𝑉𝑘𝑡 : Power o/p from 𝑘 th solar PV plant at time 𝑡 

𝛲𝑠𝑟𝑘 : Equivalent rated power o/p of the PV plant 

𝐺 : Solar irradiation forecast 

𝐺𝑠𝑡𝑑 : Solar irradiation in standard environment 

𝑅𝑐 : Certain irradiation point. 

𝑑𝑃𝑉𝑘 : Direct cost co-efficient for the 𝑘 th solar PV plant 

𝑢𝑤𝑗 , 𝑜𝑤𝑗  : Penalty cost and reserve cost for the 𝑗 th wind turbine 

𝑢𝑃𝑉𝑘 , 𝑜𝑃𝑉𝑘  : Penalty cost and reserve cost for the 𝑘 th solar PV plant 

𝛲𝑔ℎ𝑙𝑡 : At time 𝑡, power generation of 𝑙 th PSP 

𝛲𝑝ℎ𝑙𝑡  : At time 𝑡, pumping power of 𝑙 th PSP 

𝛲𝑔ℎ𝑙
𝑚𝑖𝑛 , 𝛲𝑔ℎ𝑙

𝑚𝑎𝑥 : Minm and maxm generation power limits of l th PSP 

𝛲𝑝ℎ𝑙
𝑚𝑖𝑛 , 𝛲𝑝ℎ𝑙

𝑚𝑎𝑥 : Minm and maxm pumping power limits of 𝑙 th PSP 

𝑄𝑔ℎ𝑙𝑡(𝛲𝑔ℎ𝑙𝑡) : At time 𝑡, discharge rate of 𝑙 th PSP 

𝑄𝑝ℎ𝑙𝑡(𝛲𝑝ℎ𝑙𝑡) : At time 𝑡, pumping rate of 𝑙 th PSP 

𝑄𝑠𝑝𝑒𝑛𝑡,𝑇𝑂𝑇,𝑙 : Total amount of water spent for generation of 𝑙 th PSP 

𝑄𝑝𝑢𝑚𝑝,𝑇𝑂𝑇,𝑙 : Total amount of water pumped of 𝑙 th PSP 

𝑄𝑛𝑒𝑡,𝑠𝑝𝑒𝑛𝑡,𝑙 
: Net amount of water spent by 𝑙 th pumped storage hydraulic unit during 

operation cycle 

𝑉𝑟𝑒𝑠,𝑙𝑡 : Volume of water in upper reservoir of 𝑙 th PSP at time 𝑡 

𝑉𝑟𝑒𝑠,𝑙
𝑚𝑖𝑛 , 𝑉𝑟𝑒𝑠,𝑙

𝑚𝑎𝑥 : Minm and maxm limits of upper reservoir storage of 𝑙 th PSP 

𝑉𝑟𝑒𝑠,𝑙
𝑠𝑡𝑎𝑟𝑡 , 𝑉𝑟𝑒𝑠,𝑙

𝑒𝑛𝑑  : Specified volume of water at starting and final in upper reservoir of 𝑙 th PSP 

𝐼𝑛𝑐𝑚𝑎𝑥  : Maxm increased load at any hour (MW) 

𝐿𝐵𝑎𝑠𝑒,𝑡 : Forecasted base load at at time 𝑡 

𝐷𝑅𝑡 : Percentage of forecasted based load participated in DRP at at time 𝑡 

𝐷𝑅𝑚𝑎𝑥 : Maximum percentage of base load that can participate in DRP 

𝐼𝑛𝑐𝑡 : Amount of increased load at time𝑡 

𝐿𝑠𝑡 : Shiftable load at time 𝑡 

𝐹 : Failure rate (failure times/year)  

𝐹𝑃𝑉 , 𝐹𝑤 : Limit of rate of failure of solar and wind unit (failure times/hour) 

𝑀𝑇𝑇𝑅 : Mean time to repair 

𝑀𝐷𝑇𝑖 , 𝑀𝑈𝑇𝑖 : Mean down and up time of 𝑖 th gas turbine 

𝜌 : Rate of forced outage 

𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 , 𝜌𝐴𝑔𝑖𝑛𝑔 , 𝜌𝑊𝑒𝑎𝑡ℎ𝑒𝑟  : Forced outage rate due to repairable, aging, and weather dependent failure 

𝜌𝑤𝑗𝑡 , 𝜌𝑃𝑉𝑘𝑡 : At time 𝑡, forced outage rate of 𝑗 th wind turbine and 𝑘 th solar power plant 

𝜆 : Failure probability 

𝑆𝑤𝑗𝑡 : '1' if 𝑗 th wind power unit is scheduled on at time 𝑡 and otherwise '0'. 

𝑆𝑃𝑉𝑘𝑡  : '1' if 𝑘 th Solar PV plant is scheduled at time 𝑡 and otherwise '0'  

𝑆𝐺𝑗𝑡  : '1' if 𝑖th gas turbine is scheduled on at time 𝑡 and otherwise '0' 

𝛵𝑜𝑛,𝑖,(𝑡−1), 𝛵𝑜𝑓𝑓,𝑖,(𝑡−1) : On and off condition of 𝑖 th gas turbine before (𝑡 − 1)th time 

𝑡, 𝑇 : Time index and scheduling period 

𝛵𝑔𝑒𝑛 : Set containing time intervals where PSP operate in generation mode 

𝛵𝑝𝑢𝑚𝑝 : Set containing time intervals where PSP operate in pumping mode 

𝛮𝐺 : No. of thermal generating units 

𝛮𝑤 : No. of wind turbine 

𝛮𝑃𝑉 : No. of solar pv plant 

𝛮𝑃𝑢𝑚𝑝 : No. of psp 
 

 

1. INTRODUCTION 

Microgrid (MG) is the core component of a smart grid by providing efficient energy system with 

enhanced power quality, reliability and economy to grid-independent end user sites. MGs continue to operate 
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with improved integration of recent smart grid technologies, disseminated conventional and renewable energy 

sources, competent pumped-storage-hydraulic (PSH) unit and boost customer participation through demand 

side management [1], [2]. Thus, MG can purchase power from upstream grid, distributed energy sources with 

the advantage of time-varying electricity prices to meet its demand. But, the variability and intermittency of 

renewable energy sources and their outages are the main factors which challenge the MG operators to buy 

electricity at a price variable from a day-ahead market so that cost and emission are optimized simultaneously. 

Hence, to bid for electricity in the day-ahead market, MG should plan an optimal bidding strategy to buy power 

from upstream grid with demand response program (DRP) taking into consideration the uncertainty and 

outages of the sources of renewable energy. 

To reduce price of energy in the electricity market which is deregulated and to enhance the reliability 

of the power system, MG operators give emphasis to the best bidding policy and this has been discussed in the 

literature [3]–[11]. Lim and Kim [3], a distributed load-shedding scheme-based bidding strategy is designed to 

maximize the profits of power consumers through q-learning algorithm. Optimal bidding scheme for MG has 

been structured using stochastic programming in [4] for power scheduling and profit maximization, and two-

stage stochastic programming in [5]. A bi-level programming based energy bidding strategy for MG has been 

proffered in [4] in which stochastic model of uncertain renewable energy sources and loads are considered. 

Another stochastic optimal bidding strategy is framed in [6] and solved utilizing mixed-integer linear 

programming (MILP). Ferruzzi et al. [7], a risk management based day-ahead bidding strategy for grid-tied 

residential MG has been proposed. Robust optimization based day-ahead bidding approach has been employed 

in [8] for maximizing the profit from joint energy and spinning reserve market. Nguyen and Le [9], DRP is 

introduced in bidding operation of MG to facilitate customers with active participation with MG aggregator 

and system operator. A hierarchical market model has been design in [10], where MG aggregator involves 

small-scale MGs in DRP assisted real-time balancing bidding. Another DRP aided short-term bidding 

framework for MG has been represented in [11] as robust optimization based best cost model. 

The gas turbine discharges many pollutants like (SOx), (NOx), and (CO2) into the ambiance for 

electric utilities, ambiance in reducing greenhouse gasses is one of the important confronts. Clean Air Act in 

1990 was intended for reducing greenhouse gasses and acid rain. So for that ,the gas turbine must decrease its 

sulfur oxides (SOx) and (NOx) level of emission [12]. Today’s civilization wants safe and sufficient electricity 

not only cost-effective, but with minimum stratum of greenhouse gasses. 

A variety of tactics are suggested to decrease the ambience greenhouse gasses [13]. Dispatching 

considering emission is preferable among these. The qualms related to renewable energy resources (RER) is 

modelled based on historical data and forecast results [6], [14]. Again, the bidding strategies in [9]–[11] 

incorporate DRP to only relief load during peak load or expensive periods. However, DRP incorporation during 

outages of distributed energy resources (DERs) can greatly secure the MG reliability and operation costs. 

Taking into account the aforementioned facts, this paper proposes a day-ahead optimal bidding 

strategy for MG based on economic environmental dispatch (EED) with DRP considering outages of 

intermittent renewable energy sources [15]. The probabilities of uncertainties of renewable energy sources are 

determined using various well established probability distribution functions (PDF), viz., lognormal PDF 

(LPDF) for solar photovoltaic (PV) units, weibull PDF (WPDF) for wind turbine (WT) units [15]. All the 

uncertain scenarios are mapped non-repeatedly within the forecasted upper and lower boundaries [16]. 

Moreover, penalty cost for underestimation and reserve cost for overestimation of RER outputs is imposed to 

main cost to encourage MG to decide accurate power generation dispatch during bidding [15]. Along with the 

intermittent nature of RERs, remoteness and harsh operating circumstances of RER plants make it more prone 

to forced outages. It is observed that, the outage probabilities of RER units also trail some specific mathematical 

formulations/PDFs depending upon different types of failures, viz, repairable failure, aging failure and weather 

dependent failure [17]–[19] discusses economic dispatch problem using different computational intelligent 

techniques. Considering the uncertainty and outage modeling of RERs, the MG operator performs the EED to 

settle the optimal power dispatch schedules of generators and pumped-storage-hydraulic (PSH) unit and 

electricity purchasing in day-ahead market to facilitate its bidding optimization. Here, NSGA-II is suggested 

to solve EED problem. 

 

 

2. PROBLEM FORMULATION 

The proposed MG is considered to be grid connected and consists of gas turbines (GTs), solar PV 

plant, wind power generating units, pumped-storage-hydraulic (PSH) unit and loads. Day-ahead whether data 

and electricity prices are assumed to be known from historical data and other factors. In order to formulate the 

bidding strategy, the MG operator has to decide the energy procurement level from upstream grid and GTs, 

solar PV plant, wind turbine and PSH generation amount to optimize total cost and emission simultaneously 
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while considering associated constraints. The subsequent objective functions with constraints were taken for 

description in the problem formulation with outage probabilities and demand side management of RER units. 

 

2.1.  Uncertainty modelling 

2.1.1. Distribution of probability of solar power plant and wind turbine 

Due to the uncertainty and intermittency, the solar power plant and wind turbine are difficult part to 

integrate into an MG even if it is important. The underestimation of renewable power results wastage of surplus 

energy while the overestimation leads to large reserve capacity margin which imbalances the steady state 

security of the MG, if demand arises, both add together to the total generation and operation costs of MG in 

energy bidding planning. So, many researchers have exercised different uncertainty modelling to evaluate 

penalty cost for underestimation and reserve cost for overestimation like lognormal, weibull, beta, and gumbel 

probability distribution functions (PDFs), by lognormal and weibull PDFs it is found that solar irradiation and 

speed of wind to be well trailed respectively as in (1) and (2) [15], [17]. 

 

𝑓𝐺(𝐺) =
1

𝐺×𝜎𝐿𝑜𝑔×√2×𝛱
× 𝑒

−{
−(𝑙𝑛 𝐺−𝜇𝐿𝑜𝑔)

2

2×𝜇𝐿𝑜𝑔
2 }

 for 𝐺 > 0 (1) 

 

𝑓𝑣(𝑣) = (
𝛽

𝛼
) × (

𝑣

𝛼
)

(𝛽−1)

× 𝑒−(
𝑏

𝛼
)

𝛽

 for 0 < 𝑣 < ∞ (2) 

 

2.1.2. Model of wind power 

At time t , the output power [17] of j th wind turbine for a given wind speed is given as (3): 

 

𝛲𝑤𝑗𝑡 = 0, for 𝑣𝑤𝑡 < 𝑣𝑖𝑛 and 𝛲𝑤𝑗𝑡 = 𝛲𝑤𝑟𝑗 × (
𝑣𝑤𝑡−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
) 

𝛲𝑤𝑗𝑡 = 𝛲𝑤𝑟𝑗 × (
𝑣𝑤𝑡−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
), for 𝑣𝑖 ≤ 𝑣𝑤𝑡 ≤ 𝑣𝑟 (3) 

𝛲𝑤𝑗𝑡 = 𝛲𝑤𝑟𝑗, for 𝑣𝑟 ≤ 𝑣𝑤𝑡 ≤ 𝑣𝑜𝑢𝑡 

 

2.1.3. Model of solar power 

At time t, the output power [20] from k th PV solar plant at time t  for a given irradiation G  is 

given by (4): 

 

𝛲𝑃𝑉𝑘𝑡 = 𝛲𝑠𝑟𝑘 × (
𝐺2

𝐺𝑠𝑡𝑑𝑅𝑐
), for 0 < 𝐺 < 𝑅𝑐 (4) 

𝛲𝑃𝑉𝑘𝑡 = 𝛲𝑠𝑟𝑘 (
𝐺

𝐺𝑠𝑡𝑑
), for 𝐺 ≥ 𝑅𝑐 

 

2.1.4. Solar power probabilities in PV power plant 

Probability o PV power is equal as the value of corresponding solar power irradiation probability  

in (5): 

 

𝑓𝑃𝑉(Ρ𝑃𝑉) = 𝑓𝐺(𝐺) (5) 

 

2.1.5. Wind turbine power probabilities 

Wind power probabilities for discrete zones, i.e., for 1st and 3rd case of (3), can be calculated using (6) 

and (7) respectively [14]. 
 

𝑓𝑤(𝛲𝑤)|𝛲𝑊=0 = 1 − 𝑒−(
𝑣𝑖𝑛

𝛼
)

𝛽

+ 𝑒−(
𝑣𝑜𝑢𝑡

𝛼
)

𝛽

 (6) 
 

𝑓𝑤(𝛲𝑤)|𝛲𝑊=𝛲𝑊𝑟
= −𝑒−(

𝑣𝑖𝑛
𝛼

)
𝛽

− 𝑒−(
𝑣𝑜𝑢𝑡

𝛼
)

𝛽

 (7) 

 

The probability for WT power in the continuous region as second case in (3) can be calculated as (8). 
 

𝑓𝑤(𝛲𝑤) =
𝛽×(𝑣𝑟−𝑣𝑖𝑛)

𝛼𝛽+𝛲𝑤𝑟
× [𝑣𝑖𝑛 +

𝛲𝑤

𝛲𝑤𝑟
× (𝑣𝑟 − 𝑣𝑖𝑛)]

(𝛽−1)

× 𝑒
−(

𝑣𝑖𝑛+
𝛲𝑤

𝛲𝑤𝑟
×(𝑣𝑟−𝑣𝑖𝑛)

𝛼
)

𝛽

 (8) 
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2.2.  Modelling outage of wind turbine and solar power plant 

Frequently renewable sources are facing forced outage due to harsh environmental condition, Aging, 

weather dependency and repairable failure are the three factors on which the forced outage modelling depends. 

For any power system, the repairable forced outage rate is given as (9) [15]. 
 

𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 =
𝐹×𝑀𝑇𝑇𝑅

8760
 (9) 

 

During the service time T , usually the component aging failure model follows the normal PDF the aging 

failure rate is calculated as (10). 
 

𝜌𝐴𝑔𝑖𝑛𝑔 =
1

𝜎𝑁𝑜𝑟𝑚×√2×𝛱
× 𝑒

−
(𝛵−𝜇𝑁𝑜𝑟𝑚)

2

2×𝜎𝑁𝑜𝑟𝑚
2

 (10) 

 

For a time period of? t, by exponential distribution as (11), the weather dependent failure model is modelled 

as follows: 
 

𝜌𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 1 − 𝑒−𝜆×𝛥𝑡 (11) 
 

hence, multi-factor independent outage is involved; using the union set concept, the outage rate can be 

evaluated. For any renewable unit the the forced outage rate can be given by (12). 
 

𝜌 = 𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 ∪ 𝜌𝐴𝑔𝑖𝑛𝑔 ∪ 𝜌𝑊𝑒𝑎𝑡ℎ𝑒𝑟 = 𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 + 𝜌𝐴𝑔𝑖𝑛𝑔 + 𝜌𝑊𝑒𝑎𝑡ℎ𝑒𝑟 − 𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 × 𝜌𝐴𝑔𝑖𝑛𝑔 − 

𝜌𝐴𝑔𝑖𝑛𝑔 × 𝜌𝑊𝑒𝑎𝑡ℎ𝑒𝑟 − 𝜌𝑤𝑒𝑎𝑡ℎ𝑒𝑟 × 𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 − 𝜌𝑅𝑒 𝑝𝑎𝑖𝑟 × 𝜌𝐴𝑔𝑖𝑛𝑔 × 𝜌𝑊𝑒𝑎𝑡ℎ𝑒𝑟  (12) 

 

2.3.  Objective functions and constraints 

For optimal bidding, the objective functions i.e., simultaneously total cost and emission are optimized 

considering every operational constraint. Total cost is the summation of energy cost purchased from grid, fuel 

and operation cost of gas turbines and operation cost of solar PV plants and wind turbines during entire time scale. 

Total emission is the summation of emission corresponding to purchased grid power and emission from gas turbines. 

− Cost 

Cost function of fuel of the gas turbine is expressed as a quadratic function of its power output. The 

operational costs of the solar PV units and WT units consist of reserve cost for overestimation direct cost, 

penalty cost for underestimation on dispatchable solar power and wind power respectively. The total cost is 

the summation of fuel cost of GT power, cost of power purchased from grid and operational cost of PV solar 

plant and wind turbine. 

 

𝐹𝐶 = ∑ [∑{(𝑎𝐺𝑖 + 𝑏𝐺𝑖 × 𝛲𝐺𝑖𝑡 + 𝑐𝐺𝑖 × 𝛲𝐺𝑖𝑡
2 ) × 𝑆𝐺𝑖𝑡} + (𝑐𝑔𝑟𝑖𝑑𝑡 × 𝛲𝑔𝑟𝑖𝑑,𝑡)

𝛮𝐺

𝑖=1

𝛵

𝑡=1

 

+ ∑{𝑑𝑤𝑗 × 𝛲𝑤𝑗𝑡 + 𝑂𝑤𝑗𝑡(𝛲𝑤𝑗𝑡) + 𝑈𝑤𝑗𝑡(𝛲𝑤𝑗𝑡)} × 𝑆𝑤𝑗𝑡

𝛮𝑤

𝑗=1

 

+∑ {𝑑𝑃𝑉𝑘 × 𝛲𝑃𝑉𝑘𝑡 + 𝑂𝑃𝑉𝑘𝑡(𝛲𝑃𝑉𝑘𝑡) + 𝑈𝑃𝑉𝑘𝑡(𝛲𝑃𝑉𝑘𝑡)} × 𝑆𝑃𝑉𝑘𝑡
𝛮𝑃𝑉
𝑘=1 ] (13) 

 

where 𝑆𝑤𝑗𝑡 = {
1, 𝜌𝑤𝑗𝑡 < 𝐹𝑤

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and 𝑆𝑃𝑉𝑘𝑡 = {

1, 𝜌𝑃𝑉𝑘𝑡 < 𝐹𝑃𝑉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

On dispatchable wind power, for overestimation reserve cost and for underestimation penalty cost is modelled 

respectively in (14)-(15). 

 

𝑂𝑤𝑗𝑡(𝛲𝑤𝑗𝑡) = 𝑜𝑤𝑗 × ∫ (𝛲𝑤𝑗𝑡 − 𝑦)
𝛲𝑤𝑗𝑡∫𝑤(𝑦)

𝛲𝑤𝑗𝑡
𝑚𝑖𝑛  (14) 

 

𝑈𝑤𝑗𝑡(𝛲𝑤𝑗𝑡) = 𝑢𝑤𝑗 × ∫ (𝑦 − 𝛲𝑤𝑗𝑡) × 𝑓𝑤(𝑦)
𝛲𝑤𝑗𝑡

𝑚𝑎𝑥∫

𝛲𝑤𝑗𝑡
 (15) 

 

Reserve cost for overestimation and penalty cost for underestimation for dispatchable solar power is modelled 

respectively in (16)-(17). 



Intelektual J Energy Harvesting Storage  ISSN: 2963-6272  

 

Strategy for optimal bidding of micro-grid with demand side management … (Chitralekha Jena) 

53 

𝑂𝑃𝑉𝑘𝑡(𝛲𝑃𝑉𝑘𝑡) = 𝑜𝑃𝑉𝑘 × ∫ (𝛲𝑃𝑉𝑘𝑡 − 𝑥)
𝛲𝑃𝑉𝑘𝑡∫𝑃𝑉(𝑥)

𝛲𝑃𝑉𝑘𝑡
𝑚𝑖𝑛  (16) 

 

𝑈𝑃𝑉𝑘𝑡(𝛲𝑃𝑉𝑘𝑡) = 𝑢𝑃𝑉𝑘 × ∫ (𝑥 − 𝛲𝑃𝑉𝑘𝑡)
𝛲𝑃𝑉𝑘𝑡

𝑚𝑎𝑥 ∫𝑃𝑉(𝑥)

𝛲𝑃𝑉𝑘𝑡
 (17) 

 

− Emission 

The ambience green house gases such as SOx, NOx, and CO2 produced by gas turbine is modelled 

separately. But, for evaluation purpose, total emission of green house gases is given as sum of a quadratic 

function, while the total emission is the summation of emission from gas turbine and emission of power taken 

from upstream grid. 

 

𝐹𝐸 = ∑ [∑ {(𝛼𝐺𝑖 + 𝛽𝐺𝑖 × 𝛲𝐺𝑖𝑡 + 𝛾𝐺𝑖 × 𝛲𝐺𝑖𝑡
2 ) × 𝑆𝐺𝑖𝑡} + (𝑒𝑔𝑟𝑖𝑑𝑡 × 𝛲𝑔𝑟𝑖𝑑,𝑡)]

𝛮𝐺
𝑖=1

𝛵
𝑡=1  (18) 

 

2.3.1. Power balance constraint 

Limit of power balance is depicted in (19)-(20), which states that the power procured from grid, GTs, 

WTs, PVs, and PSH unit will be scheduled according to the load considering DRP. Assuming that, when load 

is curtailed due to DRP, at that time 𝐿𝑠𝑡 = 0 and, when load is shifted to base load demand, at that time no 

load is curtailed. 

 

𝛲𝑔𝑟𝑖𝑑,𝑡 + ∑(𝛲𝐺𝑖𝑡 × 𝑆𝐺𝑖𝑡)

𝛮𝐺

𝑖=1

+ ∑(𝛲𝑤𝑗𝑡 × 𝑆𝑤𝑗𝑡)

𝛮𝑤

𝑗=1

+ ∑(𝛲𝑃𝑉𝑘𝑡 × 𝑆𝑃𝑉𝑘𝑡) + ∑ 𝛲𝑔ℎ𝑙𝑡

𝛮𝑝𝑢𝑚𝑝

𝑙=1

𝛮𝑃𝑉

𝑘=1

 

= (1 − 𝐷𝑅𝑡) × 𝐿𝐵𝑎𝑠𝑒,𝑡 + 𝐿𝑠𝑡 , 𝑡 ∈ 𝛵𝑔𝑒𝑛  (19) 

 

𝛲𝑔𝑟𝑖𝑑,𝑡 + ∑(𝛲𝐺𝑖𝑡 × 𝑆𝐺𝑖𝑡)

𝛮𝐺

𝑖=1

+ ∑(𝛲𝑤𝑗𝑡 × 𝑆𝑤𝑗𝑡)

𝛮𝑤

𝑗=1

+ ∑(𝛲𝑃𝑉𝑘𝑡 × 𝑆𝑃𝑉𝑘𝑡) − ∑ 𝛲𝑝ℎ𝑙𝑡

𝛮𝑝𝑢𝑚𝑝

𝑙=1

𝛮𝑃𝑉

𝑘=1

 

= (1 − 𝐷𝑅𝑡) × 𝐿𝐵𝑎𝑠𝑒,𝑡 + 𝐿𝑠𝑡 , 𝑡 ∈ 𝛵𝑝𝑢𝑚𝑝 (20) 

 

This power procurement from upstream grid is limited by power transfer capacity of line linking the MG to 

main grid as (21). 

 

0 ≤ 𝛲𝑔𝑟𝑖𝑑,𝑡 ≤ 𝛲𝑔𝑟𝑖𝑑
𝑚𝑎𝑥  (21) 

 

2.3.2. Pumped-storage-hydraulic (PSH) unit constraints 
 

𝑉𝑟𝑒𝑠,𝑙(𝑡+1) = 𝑉𝑟𝑒𝑠,𝑙𝑡 + 𝑄𝑝ℎ𝑙𝑡(𝛲𝑝ℎ𝑙𝑡), 𝑙 ∈ 𝛮𝑝𝑢𝑚𝑝, 𝑡 ∈ 𝛵𝑝𝑢𝑚𝑝 (22) 

 

𝑉𝑟𝑒𝑠,𝑙(𝑡+1) = 𝑉𝑟𝑒𝑠,𝑙𝑡 − 𝑄𝑔ℎ𝑙𝑡(𝛲𝑔ℎ𝑙𝑡), 𝑙 ∈ 𝛮𝑝𝑢𝑚𝑝, 𝑡 ∈ 𝛵𝑔𝑒𝑛 (23) 

 

𝑃𝑔ℎ𝑙
𝑚𝑖𝑛 ≤ 𝑃𝑔ℎ𝑙𝑡 ≤ 𝑃𝑔ℎ𝑙

𝑚𝑎𝑥  𝑙 ∈ 𝑁𝑝𝑢𝑚𝑝, 𝑡 ∈ 𝑇𝑔𝑒𝑛 (24) 

 

𝑃𝑝ℎ𝑙
𝑚𝑖𝑛 ≤ 𝑃𝑝ℎ𝑙𝑡 ≤ 𝑃𝑝ℎ𝑙

𝑚𝑎𝑥  𝑙 ∈ 𝑁𝑝𝑢𝑚𝑝, 𝑡 ∈ 𝑇𝑝𝑢𝑚𝑝 (25) 

 

𝑉𝑟𝑒𝑠,𝑙
𝑚𝑖𝑛 ≤ 𝑉𝑟𝑒𝑠,𝑙𝑡 ≤ 𝑉𝑟𝑒𝑠,𝑙

𝑚𝑎𝑥  𝑙 ∈ 𝑁𝑝𝑢𝑚𝑝 , 𝑡 ∈ 𝑇 (26) 

 

In this problem, net amount of water utilized by PSH unit is equal to zero as the initial and final volume of 

water of the upper reservoir of the (PSH) unit are taken, 

 

𝑉𝑟𝑒𝑠,𝑙0 = 𝑉𝑟𝑒𝑠,𝑙𝛵 = 𝑉𝑟𝑒𝑠,𝑙
𝑠𝑡𝑎𝑟𝑡 = 𝑉𝑟𝑒𝑠,𝑙

𝑒𝑛𝑑  (27) 
 

𝑄𝑛𝑒𝑡,𝑠𝑝𝑒𝑛𝑡,𝑙 = 𝑄𝑠𝑝𝑒𝑛𝑡,𝑇𝑂𝑇,𝑙 − 𝑄𝑝𝑢𝑚𝑝,𝑇𝑂𝑇,𝑙 

= ∑ 𝑄𝑔ℎ𝑙𝑡(𝛲𝑔ℎ𝑙𝑡)𝑡∈𝛵𝑔𝑒𝑛
− ∑ 𝑄𝑝ℎ𝑙𝑡(𝛲𝑝ℎ𝑙𝑡) = 0𝑡∈𝛵𝑝𝑢𝑚𝑝

 (28) 

 

2.3.3. Generation limits of gas turbine 
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𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖𝑡 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥  𝑙 ∈ 𝑁𝐺 , 𝑡 ∈ 𝑇 (29) 

 

2.3.4. Ramp rate limits of gas turbine 

𝛲𝐺𝑖𝑡 − 𝛲𝐺𝑖(𝑡−1) ≤ 𝑈𝑅𝑖, → 𝑖 ∈ 𝛮𝐺 , 𝑡 ∈ 𝛵 

𝛲𝐺𝑖(𝑡−1) − 𝛲𝐺𝑖𝑡 ≤ 𝐷𝑅𝑖, → 𝑖 ∈ 𝛮𝐺 , 𝑡 ∈ 𝛵 (30) 

 

{
(𝛵𝑜𝑛,𝑖,(𝑡−1) − 𝑀𝑈𝑇𝑖) × (𝑆𝐺𝑖(𝑡−1) − 𝑆𝐺𝑖𝑡) ≥ 0, 𝑖 ∈ 𝛮𝐺 , 𝑡 ∈ 𝛵

(𝛵𝑂𝑓𝑓,𝑖,(𝑡−1) − 𝑀𝐷𝑇𝑖) × (𝑆𝐺𝑖𝑡 − 𝑆𝐺𝑖(𝑡−1)) ≥ 0, 𝑖 ∈ 𝛮𝐺 , 𝑡 ∈ 𝛵
 (31) 

 

Demand side management (DSM) programs gives many merits like, boosting the power system 

security reducing the cost, [21]. Programs are categorized as strategic conservation demand response. Here, 

DSM is utilized and is modeled according to time-of-use (TOU) program [11], fixing the net amount of load 

demand, some percentage of load demand is shifted from peak or expensive period to off peak or cheap period. 

Hence, the load curve flattens and the probable operation cost trims down. Numerical model of TOU program 

is given by (32) and constrained by (33)-(36). 

 

𝐿𝑡 = (1 − 𝐷𝑅𝑡) × 𝐿𝐵𝑎𝑠𝑒 + 𝐿𝑠𝑡 (32) 

 
∑ 𝐿𝑠𝑡 = ∑ 𝐷𝑅𝑡 × 𝐿𝐵𝑎𝑠𝑒,𝑡

𝛵
𝑡=1

𝛵
𝑡=1  (33) 

 

𝐿𝐼𝑛𝑐𝑡
= 𝐼𝑛𝑐𝑡 × 𝐿𝐵𝑎𝑠𝑒,𝑡 (34) 

 

𝐷𝑅𝑡 ≤ 𝐷𝑅𝑚𝑎𝑥, 𝑡 ∈ 𝛵 (35) 

 

𝐼𝑛𝑐𝑡 ≤ 𝐼𝑛𝑐𝑚𝑎𝑥, 𝑡 ∈ 𝛵 (36) 

 

 

3. NONDOMINATED SORTING GENETIC ALGORITHM-II 

To contend with multi-objective optimization problems, Srinivas and Deb [22] ascertained 

nondominated sorting genetic algorithm (NSGA). Nondomination is utilized as grading criterion of solutions, 

and fitness distribution is utilized for diversification control in the investigated space. To fitness distribution 

parameters, NSGA is extremely responsive, Deb et al. [23] pioneered nondomoinated sorting genetic algorithm-

II (NSGA-II), which gives further dependable solution quickly than its antecedent. Due to limitation in space, 

detailed description of NSGA-II is not mentioned here. The flow chart of NSGA-II is shown in Figure 1 (see 

in Appendix). 

 

 

4. SIMULATION RESULTS 

The proposed NSGA-II based a day-ahead optimal bidding strategy for MG based on economic 

environmental dispatch (EED) with DRP considering outages of intermittent renewable energy sources is 

performed using numerical simulation. Simulation outcomes of the test system is used to match the efficacy of 

the suggested NSGA-II with strength pareto evolutionary algorithm 2 (SPEA 2) [24]. 

The proposed grid-connected MG model has three gas turbines, one solar PV unit, one wind turbine 

and one PSH unit and their data are shown in Table 1, Table 2, and Table 3 respectively in the appendix. Day-

ahead forecasted loads and electricity prices for 24 consecutive hours are tabulated in Table 4. 15% of 16th and 

17th hour load is shifted to 5th and 6th hour and 20% of 19th hour load is shifted to 9th hour during DSM. The 

emission of grid power is considered 50Kg/MWh. The PSH plant has the following characteristics: 

Generating mode: 𝑄𝑔ℎ𝑡 is positive when generating, 𝛲𝑔ℎ𝑡  is positive and 0 ≤ 𝛲𝑔ℎ𝑡 ≤ 6 MW, 

𝑄𝑔ℎ𝑡(𝛲𝑔ℎ𝑡) = 4 + 2𝛲𝑔ℎ𝑡  acre-ft/hr. Pumping mode: 𝑄𝑝ℎ𝑡 is negative when pumping, 𝛲𝑝ℎ𝑡 is negative and 

−6 𝑀𝑊 < 𝛲𝑝ℎ𝑡 ≤ 0 𝑀𝑊, 𝑄𝑝ℎ𝑡(𝛲𝑝ℎ𝑡) = −12acre-ft/h with 𝛲𝑝ℎ𝑡 = −6 MW. 

Operating limitations: the pumped hydro plant will be permitted to work only at −6 MW while 

pumping. Reservoir starts at 160 acre-ft and must be at 160 acre-ft at the end of the 24 hours. The water inflow 

rate is neglected without considering spillage. 

Upper and lower forecast limits of solar irradiation and velocity of wind are given in Figures 2(a) and 

2(b) respectively. At 16th hour a sudden change in speed of wind is noticed in Figure 2(b). Due to this high 

wind speed, it results into turbulent weather condition which causes failure in renewable unit? the failure 

probabilities, for PV and WT units, can be fetched from weather dependent historical data which are portrayed 
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in Figure 2(c). Forced outage rates of PV and WT units are shown in Figure 2(d) correspondingly. From  

Figure 2(d), it is evident that, PV unit has high failure rates at 16th and 17th hour and WT unit has high failure 

rates at 16th, 17th, and 18th hour. 17th or/and 18th hour is required for repairmen of PV and WT units respectively. 

Total cost and emission are the two conflicting objective functions. To elucidate contradictory 

relationships amongst the objective functions, each objective function i.e., total cost and total emission is 

minimized separately by utilizing real-coded genetic algorithm (RCGA). Here, the population size, maximum 

number of iterations, crossover and mutation probabilities are chosen as 100, 200, 0.9, and 0.2 respectively [25]. 

NSGA-II has been pertained to optimize two objectives i.e., total cost and total emission objectives 

simultaneously. For comparison, SPEA 2 has been pertained for solving this problem. In case of NSGA-II and 

SPEA 2, the population size, maximum number of iterations, crossover and mutation probabilities are taken as 

20, 30, 0.9, and 0.2 respectively. 

 

 

    

(a) (b) (c) (d) 

 

Figure 2. These figures are; (a) upper and lower forecast limits of solar irradiation, (b) upper and lower 

forecast limits of wind speed, (c) failure probabilities (?) for PV and WT, and (d) forced outage rates of PV 

and WT units 

 

 

The gas turbine-wind-solar-pumped storage generations and power procured from upstream grid 

acquired from economic dispatch and emission dispatch are summarized in Tables 1 and 2 respectively. The 

gas turbine-wind-solar-pumped storage generations and power procured from upstream grid acquired from 

economic emission dispatch utilizing NSGA-II and SPEA 2 are summarized in Table 3 and Table 4 (see in 

Appendix) respectively. The total cost and total emission acquired from economic dispatch, emission dispatch 

and economic emission dispatch are summed up in Table 5. Figures 3(a) and 3(b) (see in appendix) reveal cost 

and emission convergence characteristics. Figure 3(c) (see in appendix) reveals the distribution of 20 

nondominated solutions acquired in the last iteration of suggested NSGA-II and SPEA2 acquired from cost 

and emission objectives optimized simultaneously. 
 

 

Table 1. Hourly generation (MW) schedule acquired from economic dispatch 
Hour 𝛲𝐺1 𝛲𝐺2 𝛲𝐺3 𝛲𝑤 𝛲𝑃𝑉 𝛲𝑔ℎ 𝛲𝑔𝑟𝑖𝑑 

1 0.6298 0 1.5639 5.8212 0 -6.0000 12.9852 

2 0.8553 3.0453 0.7363 3.7275 0 -6.0000 14.6356 
3 0.3991 1.0051 0.8399 6.0000 0 -6.0000 16.7560 

4 0.6081 1.3772 1.6879 6.0000 0 -6.0000 19.3268 

5 0.4880 0.2047 1.9993 6.0000 0.1923 -6.0000 28.8158 
6 1.9216 0.7481 2.7325 6.0000 0.8348 -6.0000 24.3881 

7 1.5856 0.3667 0 6.0000 2.3992 -6.0000 24.6485 

8 0.1625 1.9725 0.3555 5.7430 3.4953 -6.0000 22.2711 
9 0.5190 1.1200 3.3573 2.9220 3.9706 2.3230 20.2882 

10 0.8907 2.6495 1.5506 4.0779 4.5148 5.3246 8.9919 

11 0.0170 1.4556 0.5235 2.9853 5.3980 5.2082 13.4123 
12 0 0.0240 4.2554 3.2272 5.1496 1.2458 20.0979 

13 0.3012 0 0.2509 3.6931 03.6931 4.1066 17.7686 

14 2.2093 1.0051 0.9918 3.6435 3.4621 5.7353 26.9530 
15 1.6945 1.4396 0.1913 2.0145 2.0145 2.9754 20.9221 

16 0.3881 0.7093 2.4411 0 0 6.0000 22.7616 

17 0.7696 1.8868 1.4992 0 0 3.1149 24.6046 
18 2.2199 2.6392 1.0943 0 0.7651 6.0000 29.2816 

19 3.1803 2.0358 3.7213 3.5852 0.0101 2.7308 22.7366 

20 1.6180 2.9112 4.3674 3.6505 0 4.6711 26.7818 
21 1.2593 2.3805 0.3604 3.8269 3.8269 -6.0000 22.1729 

22 1.2593 2.3805 0.3604 3.8269 0 -6.0000 22.1729 

23 1.6118 2.5635 0.8152 4.0647 0 -6.0000 24.9448 
24 0.3996 0.4968 2.5094 3.3909 -6.0000 -6.0000 23.7034 
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Table 2. Hourly generation (MW) schedule acquired from emission dispatch 
Hour 𝛲𝐺1 𝛲𝐺2 𝛲𝐺3 𝛲𝑤 𝛲𝑃𝑉 𝛲𝑔ℎ 𝛲𝑔𝑟𝑖𝑑 

1 7.0000 8.0000 1.1149 4.2348 0 -6.0000 0.6503 

2 6.1038 4.2514 4.4232 3.9685 0 -6.0000 4.2530 
3 7.0000 4.8154 6.0059 6.0000 0 -6.0000 1.1788 

4 3.9615 5.5252 10.0000 6.0000 0 -6.0000 3.5133 

5 7.0000 8.0000 8.3917 6.0000 0.2820 -6.0000 8.0263 
6 4.1579 7.7078 6.9339 6.0000 1.1555 -6.0000 10.6700 

7 7.0000 8.0000 10.0000 6.0000 2.1760 -6.0000 1.8240 

8 3.3406 4.4722 7.9446 6.0000 3.2179 -6.0000 9.0247 
9 0 4.4199 6.4004 5.3569 3.9839 6.0000 8.3390 

10 3.6391 8.0000 10.0000 1.7040 4.5179 0 0.1390 

11 0 5.7708 8.2316 2.9397 5.4283 6.0000 0.6297 
12 3.3376 8.0000 10.0000 0.1225 0.1225 6.0000 1.3240 

13 5.0748 5.4475 8.7944 3.2667 4.2871 0 2.6295 

14 3.3861 8.0000 10.0000 3.7343 3.6557 0 15.2239 
15 7.0000 6.7643 7.0934 3.1759 2.9030 0 4.5635 

16 5.1998 8.0000 10.0000 0 0 6.0000 3.1002 

17 7.0000 4.2384 6.1245 0 0 6.0000 8.5121 
18 6.7873 8.0000 10.0000 0 0.7848 6.0000 10.4279 

19 7.0000 7.1155 7.6116 1.6464 0.0193 6.0000 8.6072 

20 4.4799 8.0000 4.3326 4.3861 0 6.0000 16.8014 
21 7.0000 5.7954 6.5600 3.0305 0 -6.0000 20.6140 

22 5.9080 8.0000 10.0000 3.6751 0 -6.0000 2.4168 

23 7.0000 4.8374 9.8673 1.3874 0 -6.0000 10.9079 
24 5.4220 8.0000 9.8645 4.4821 0 -6.0000 2.7314 

 

 

Table 3. Hourly generation (MW) schedule acquired from EED using NSGA-II 
Hour 𝛲𝐺1 𝛲𝐺2 𝛲𝐺3 𝛲𝑤 𝛲𝑃𝑉 𝛲𝑔ℎ 𝛲𝑔𝑟𝑖𝑑 

1 2.9849 3.3890 6.0376 5.3880 0 -6.0000 3.2004 
2 4.3916 4.8276 4.7287 6.0000 0 -6.0000 3.0521 

3 5.5260 4.2543 5.5066 6.0000 0 -6.0000 3.7130 

4 3.7725 1.6378 4.6157 5.7529 0 -6.0000 13.2211 
5 5.3743 2.1891 3.8308 6.0000 0.5194 -6.0000 19.7865 

6 5.7943 5.9921 7.5277 6.0000 1.4583 -6.0000 9.8526 
7 4.6254 6.0212 8.6737 6.0000 2.1887 -6.0000 7.4911 

8 3.3167 3.9214 4.1157 6.0000 3.4748 -6.0000 13.1714 

9 3.7432 5.6613 4.8407 3.9216 3.9872 2.9205 9.4256 
10 1.1587 5.1351 1.8917 3.1512 4.1462 2.0266 10.4904 

11 4.2170 4.1247 3.0509 2.6654 5.3866 4.0886 5.4669 

12 3.3202 5.7683 6.3407 1.8956 5.1213 4.0920 7.4619 
13 1.9101 5.0711 3.8029 1.1529 4.4227 5.3794 7.7608 

14 4.9169 4.0195 6.3225 4.5013 3.3649 5.7586 15.1164 

15 2.7623 5.6823 5.1959 1.9308 3.2481 6.0000 6.6806 
16 2.1534 3.6187 6.2732 0 0 0.8184 19.4364 

17 4.2556 3.8879 5.5650 0 0 5.7746 12.3919 

18 4.5558 5.1500 6.5900 0 0.9406 6.0000 18.7636 
19 2.7147 3.1687 5.5892 6.0000 0.1918 2.5038 17.8318 

20 2.7607 4.2326 5.5113 1.8022 0 2.6334 27.0598 

21 5.1978 2.3587 7.0244 1.8975 0 -6.0000 26.5216 
22 2.5099 2.6826 8.4443 4.1604 0 2-6.0000 12.2028 

23 1.6348 6.1588 6.7497 3.8893 0 -6.0000 15.5674 

24 2.6016 4.9480 5.6753 2.3559 0 -6.0000 14.9193 

 
 

Table 5. Comparison of performance 
 Cost ($) Emission (Kg) 

Economic dispatch 63538 26394 
Emission dispatch 217006 8910 

EED 
NSGA-II 130407 16098 

SPEA 2 131451 16286 

 

 

5. CONCLUSION 

NSGA-II based day-ahead optimal bidding strategy for MG based on economic environmental 

dispatch is proposed in the presence of DRP under outage conditions and uncertainties of renewable energy 

sources. The uncertainty related to solar and wind units are modeled using lognormal and Weibull probability 

distribution. TOU based DRP is used, especially considering time of outages along with time of peak 

loads/prices to enhance reliability of MG and reduce the cost and emission. 
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Figure 1. Flowchart of NSGA-II 

 

 

Table 4. Hourly generation (MW) schedule acquired from EED using SPEA 2 
Hour 𝛲𝐺1 𝛲𝐺2 𝛲𝐺3 𝛲𝑤 𝛲𝑃𝑉 𝛲𝑔ℎ 𝛲𝑔𝑟𝑖𝑑 

1 2.5427 2.4507 6.7079 5.7131 0 -6.0000 3.5856 

2 2.3406 1.9487 7.5644 4.2689 -6.0000 -6.0000 6.8774 
3 3.6110 5.5991 7.3003 6.0000 0 -6.0000 2.4896 

4 5.6085 6.2597 2.8790 6.0000 0 -6.0000 8.2528 

5 1.8660 4.9910 6.7697 6.0000 0.0015 -6.0000 18.0719 
6 3.7170 2.3154 2.3735 6.0000 0.8573 -6.0000 21.3618 

7 3.2606 3.4488 2.3018 6.0000 2.5002 -6.0000 17.4885 

8 1.7427 3.0117 6.5092 4.7685 3.6194 -6.0000 14.3486 
9 1.9691 5.7996 5.8071 2.1872 3.8808 3.2319 11.6242 

10 4.1763 2.8650 3.5324 3.1975 4.6041 5.6938 3.9310 

11 3.1729 2.3437 2.6837 2.1978 5.4940 3.1735 9.9344 
12 3.3695 2.3701 6.5418 1.8983 5.2217 4.8002 9.7984 

13 5.3372 5.0548 4.4428 3.7490 4.6394 1.9723 4.3045 

14 2.9497 2.6122 6.3042 3.9209 3.5155 4.8144 19.8830 
15 2.3080 3.0905 6.2872 3.6466 2.8986 0.3914 12.8777 

16 5.2098 4.5483 5.9327 0 0 6.0000 10.6092 

17 2.3849 6.6198 7.9512 0 0 2.6639 12.2552 
18 2.2529 7.4168 7.7712 0 0.8893 4.4687 19.2011 

19 4.1608 5.2687 6.5545 3.5303 0.0175 5.6991 12.7692 
20 4.4487 6.6452 7.5509 2.5236 0 5.0874 17.7442 

21 2.3126 3.4898 7.9173 2.0801 0 -6.0000 27.2002 

22 5.0339 5.1311 7.5146 3.8693 0 -6.0000 8.4510 
23 2.8586 2.4976 8.0536 3.7064 0 -6.0000 16.8838 

24 1.8391 3.8461 6.1609 4.2228 0 -6.0000 14.4311 
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(a) (b) (c) 

 

Figure 3. These figures are; (a) Cost convergence characteristic, and (b) Emission convergence characteristic 

and (c) Pareto-optimal front acquired from the last iteration 

 

 

REFERENCES 
[1] M. Smith and D. Ton, “Key connections: The U.S. department of energy?s microgrid initiative,” IEEE Power and Energy Magazine, 

vol. 11, no. 4, pp. 22–27, Jul. 2013, doi: 10.1109/MPE.2013.2258276. 

[2] D. Zhang, S. Li, P. Zeng, and C. Zang, “Optimal microgrid control and power-flow study with different bidding policies by using 

powerworld simulator,” IEEE Transactions on Sustainable Energy, vol. 5, no. 1, pp. 282–292, Jan. 2014, doi: 
10.1109/TSTE.2013.2281811. 

[3] Y. Lim and H.-M. Kim, “Strategic bidding using reinforcement learning for load shedding in microgrids,” Computers & Electrical 

Engineering, vol. 40, no. 5, pp. 1439–1446, Jul. 2014, doi: 10.1016/j.compeleceng.2013.12.013. 
[4] H. Shayeghi and B. Sobhani, “Integrated offering strategy for profit enhancement of distributed resources and demand response in 

microgrids considering system uncertainties,” Energy Conversion and Management, vol. 87, pp. 765–777, Nov. 2014, doi: 

10.1016/j.enconman.2014.07.068. 
[5] D. T. Nguyen and L. B. Le, “Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics,” 

IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1608–1620, Jul. 2014, doi: 10.1109/TSG.2014.2313612. 

[6] G. Liu, Y. Xu, and K. Tomsovic, “Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust 
optimization,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 227–237, Jan. 2016, doi: 10.1109/TSG.2015.2476669. 

[7] G. Ferruzzi, G. Cervone, L. Delle Monache, G. Graditi, and F. Jacobone, “Optimal bidding in a day-ahead energy market for micro 

grid under uncertainty in renewable energy production,” Energy, vol. 106, pp. 194–202, Jul. 2016, doi: 
10.1016/j.energy.2016.02.166. 

[8] J. Wang et al., “Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping 

products,” Applied Energy, vol. 205, pp. 294–303, Nov. 2017, doi: 10.1016/j.apenergy.2017.07.047. 

[9] D. T. Nguyen and L. B. Le, “Risk-constrained profit maximization for microgrid aggregators with demand response,” IEEE 

Transactions on Smart Grid, vol. 6, no. 1, pp. 135–146, Jan. 2015, doi: 10.1109/TSG.2014.2346024. 

[10] W. Pei, Y. Du, W. Deng, K. Sheng, H. Xiao, and H. Qu, “Optimal bidding strategy and intramarket mechanism of microgrid 
aggregator in real-time balancing market,” IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 587–596, Apr. 2016, 

doi: 10.1109/TII.2016.2522641. 

[11] A. Mehdizadeh and N. Taghizadegan, “Robust optimisation approach for bidding strategy of renewable generation‐based microgrid 
under demand side management,” IET Renewable Power Generation, vol. 11, no. 11, pp. 1446–1455, Sep. 2017, doi: 10.1049/iet-

rpg.2017.0076. 

[12] K. D. Le et al., “Potential impacts of clean air regulations on system operations,” IEEE Transactions on Power Systems, vol. 10, 
no. 2, pp. 647–656, May 1995, doi: 10.1109/59.387899. 

[13] J. H. Talaq, F. El-Hawary, and M. E. El-Hawary, “A summary of environmental/economic dispatch algorithms,” IEEE Transactions 

on Power Systems, vol. 9, no. 3, pp. 1508–1516, 1994, doi: 10.1109/59.336110. 
[14] S. Surender Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-time economic dispatch considering renewable power generation 

variability and uncertainty over scheduling period,” IEEE Systems Journal, vol. 9, no. 4, pp. 1440–1451, Dec. 2015, doi: 

10.1109/JSYST.2014.2325967. 
[15] W. Li, Riskn assessment of power systems: models, methods, and applications. Wiley, 2004. doi: 10.1002/0471707724. 

[16] J. V Seguro and T. W. Lambert, “Modern estimation of the parameters of the Weibull wind speed distribution for wind energy 

analysis,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 85, no. 1, pp. 75–84, Mar. 2000, doi: 10.1016/S0167-
6105(99)00122-1. 

[17] J. Hetzer, D. C. Yu, and K. Bhattarai, “An economic dispatch model incorporating wind power,” IEEE Transactions on Energy 

Conversion, vol. 23, no. 2, pp. 603–611, Jun. 2008, doi: 10.1109/TEC.2007.914171. 
[18] C. Jena, M. Basu, and C. K. Panigrahi, “Differential evolution with Gaussian mutation for combined heat and power economic 

dispatch,” Soft Computing, vol. 20, no. 2, pp. 681–688, Feb. 2016, doi: 10.1007/s00500-014-1531-2. 
[19] C. Jena, S. S. Mishra, and B. Panda, “Group search optimization technique for multi-area economic dispatch,” in Information and 

Decision Sciences, 2018, pp. 217–225. doi: 10.1007/978-981-10-7563-6_23. 

[20] R.-H. Liang and J.-H. Liao, “A fuzzy-optimization approach for generation scheduling with wind and solar energy systems,” IEEE 
Transactions on Power Systems, vol. 22, no. 4, pp. 1665–1674, Nov. 2007, doi: 10.1109/TPWRS.2007.907527. 

[21] A. Yousefi, H. H.-C. Iu, T. Fernando, and H. Trinh, “An approach for wind power integration using demand side resources,” IEEE 

Transactions on Sustainable Energy, vol. 4, no. 4, pp. 917–924, Oct. 2013, doi: 10.1109/TSTE.2013.2256474. 
[22] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting in genetic algorithms,” Evolutionary 

Computation, vol. 2, no. 3, pp. 221–248, Sep. 1994, doi: 10.1162/evco.1994.2.3.221. 

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE 
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: 10.1109/4235.996017. 

[24] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: improving the strength pareto evolutionary algorithm. ETH Zurich, Computer 

Engineering and Networks Laboratory, 2001. 
[25] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems, vol. 6, pp. 115–148, 1995. 

 


