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 The internet has been instrumental in the development and facilitation of 

online payment systems. However, its associated fraudulent activities on e-

platforms cannot be overlooked. As a result, there has been a growing 

interest in the application of machine learning (ML) algorithms for fraud 

detection on financial e-platforms. The goal of this research is to identify 

common types of fraud on financial e-platform, highlight different machine 

learning algorithms employed in fraud detection, and derive the best 

machine learning algorithms for fraud detection on e-platforms. To achieve 

this goal, the research followed a nine steps systematic review approach to 

retrieve Journals and conference publications from science direct, Google 

Scholar and IEEE Xplore between 2018 and 2023. Out of 2,071 articles 

identified and screened, 44 publications (23 articles and 21 conference 

proceedings) satisfied the inclusion criteria for further analysis. The random 

forest algorithm turned out to be the best ML algorithm because it ranked 

first in the frequency of usage analysis and ranked first in the performance 

analysis with an average accuracy of 96.67%. Overall, this review has 

identified the kinds of fraud on financial e-platforms, and proclaimed the 

best and least ML algorithm for fraud detection on financial e-platform. This 

can help guide future research and inform the development of more effective 

fraud detection systems. 

Keywords: 

E-platforms 

Financial transactions 

Fraud detection 

Machine learning algorithms 

Online payment systems 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Alimatu – Saadia Yussiff  

School of Physical Sciences, Department of Computer Science and Information Technology 

Faculty of Physical Sciences, University of Cape Coast 

Cape Coast, Ghana 

Email: asyussiff@ucc.edu.gh 

 

 

1. INTRODUCTION 

The advancement in technology and the evolution of the internet have paved the way for the 

establishment of modern services, including e-commerce and financial transactions. Traditional buyer-seller 

relationships and the shopping experience for many consumers have been significantly altered by e-

commerce [1]. E-commerce and the widespread use of online banking have contributed to a recent uptick in 

the volume of monetary transactions. The Internet has been instrumental in the development and facilitation 

of online payment systems. However, this increased convenience presents several obstacles, the most 

https://creativecommons.org/licenses/by-sa/4.0/
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significant of which is the problem of fraudulent activities on these e-platforms [2]. Presently, online 

financial fraud has become a more intricate and difficult challenge to solve [3].  

The most typical forms of fraud that can be committed on online systems that may cost consumers 

and e-commerce sites a lot of money include Payment fraud (criminals commit payment fraud by either 

stealing financial details or forging credentials to use for online purchases). Account takeover fraud 

(Fraudsters impersonate a real user in order to make illegal purchases or obtain sensitive information). 

Phishing scams (Scammers employ phishing emails, texts, and social media posts to fool consumers into 

divulging sensitive information by making it look to come from a trusted organization, such as a bank or 

online retailer). Identity theft (Theft of sensitive personal information, such as social security numbers or 

credit card data, can lead to the opening of fake accounts and the making of fraudulent purchases). 

Chargeback fraud (To commit chargeback fraud, a user must erroneously assert that they did not get the 

purchased products or services).  

We must learn to recognize the red flags of online fraud and take preventative measures. The 

traditional methods of fraud detection on e-platforms, such as rule-based systems and manual review 

processes, are often unable to keep up with the rapidly evolving tactics of fraudsters. These methods are also 

resource-intensive and time-consuming, making them inefficient and often ineffective in detecting and 

preventing fraud [4]. Consequently, there has been a growing interest in the application of machine learning 

(ML) models for fraud detection on e-platforms. The goal of this research is to identify common types of 

fraud on financial e-platform, highlight which ML model are used for fraud detection on financial e-

platforms and also ascertain the best ML for fraud detection on e-platforms in terms of performance matrics.  

A machine learning algorithm is a type of algorithm that can learn from data and perform a task 

without being explicitly programmed to do so. These algorithms are "soft coded" in the sense that they 

improve the task at hand through iteratively changing or adapting their underlying structure [5]. By 

measuring prediction mistakes during the training phase, machine learning has an intelligent system that 

allows it to continuously learn [6]. Machine learning has proven to be a promising approach for fraud 

detection in e-commerce due to its ability to learn from large amounts of data and identify patterns that 

traditional methods may miss. By leveraging the power of ML, e-commerce platforms can build more 

effective fraud detection systems that are faster, more accurate, and less resource-intensive. 

According to [5], depending on how the data is labeled, machine learning can be categorized as 

supervised, semi-supervised, or unsupervised. Supervised learning is the process of utilizing labeled datasets 

to train algorithms that effectively classify data or predict outcomes (e.g., classification and regression). 

Semi-supervised learning is a hybrid of supervised and unsupervised learning in which a portion of the data 

is partially labeled and the labeled portion is used to infer the unlabeled portion. In unsupervised learning, the 

learning system receives only input samples (e.g., clustering and estimation of probability density function).  

However, the use of ML models for fraud detection on e-platforms is not without its own set of 

challenges. The performance of these models depends on the quality and size of the training data, the choice 

of appropriate features and algorithms, and the complexity of the fraud detection problem. To gain a better 

understanding of machine learning models for fraud detection on e-platforms, a systematic literature review 

is necessary. Such a review can provide an overview of the existing research on the topic, identify the 

different types of machine learning models that have been used for fraud detection, and highlight the best 

models. In this regard, the current study was conducted to perform a systematic literature review to analyze 

research studies to identify the common types of fraud on financial e-platforms and to determine the best 

machine learning algorithms in terms of performance metrics that have been used for fraud detection on e-

platforms. 

 

 

2. METHOD 

This section describes in detail how we carried out the methodological literature review. Based on 

the advantages of systematic literature review (SLR) such as comprehensiveness, reliability and unbias 

coverage of relevant studies [7], this research adopted the SLR steps in [8] to conduct the SLR by following the 

key steps in Figure 1. The application of Figure 1 to our research, are further described in subsections 2.1-2.9.  

 

2.1.  Defining the research questions 

According to [8], the first stage of SLR is to establish appropriate research questions. These 

questions should be focused, clear and guide what we wanted to find out from the research. In this regard, we 

derived the following three research questions (RQs) from our pre-planned topic: 

RQ1: What are the common types of fraud on e-platforms? 

RQ2: Which machine learning algorithms are used for Fraud detection on e-platforms? 

RQ3: What are the best machine learning algorithms used on e-platforms for fraud detection? 
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Figure 1. Systematic literature review process [8] 

 

 

2.2.  Defining concepts and keywords 

In the second step, we then came out with the following three concepts in relation to the topic and 

research questions;  

Concept 1: “Machine learning models” 

Concept 2: “Fraud detection”  

Concept 3: “e-platforms” 

By considering the synonyms, other spelling variations and abbreviations of the concepts, we then 

derived the following keywords: “Machine Learning models”, “Machine Learning techniques”, “Machine 

learning algorithms”, “fraud detection”, “e-platforms”, and electronic platforms. 

 

2.3.  Defining search string 

The above keywords were then merged using control vocabulary or Boolean operators. Thus, using 

the “population, intervention, comparison, outcome” (PICO) and the “MESH” approach, we came out with 

the following search string as shown in Figure 2. 

 

 

 
 

Figure 2. Search string 

 

 

2.4.  Defining search engines 

In this sub-section 4, search engines were defined. Our methodology used a suitable selection of 

databases to obtain comprehensive coverage of the literature and to raise the likelihood of discovering highly 

suitable articles. Consequently, the following electronic literature databases were included in our search; 

ScienceDirect, Google Scholar, and IEEEXplore. 

 

2.5.  String refinement 

The string defined in sub-section 2.3 was tested in one of the search engines (Google Scholar). Once 

the string was applied, we verified if the returned papers were relevant. Known papers that are potential 

candidates for primary studies in this review (which exist on these engines) appeared in the search. In cases 

where there were no relevant results, the search string was parsed again to be calibrated. At the end, the 

refinement of the search criteria was done in each database.  

 

2.6.  Search string execution and search results 

Once the search string was defined, it was adapted to each of the selected three search engines. As 

the search went on, the search results were documented, the number of articles each search returned, and the 

date of execution were also documented. Figure 3 demonstrated the resulting preferred reporting items for 

systematic reviews and meta-analyses (PRISMA) flow diagram derived from the research. 

Thus, at the end of searching all the three databases, we found a total of 2,071 articles. These articles 

were imported into Rayaan to begin the systematic review process. First of all, 35 out of the 2,071 articles 

were de-duplicated in the “Rayaan” web tool. The remaining 2,036 articles were further screened on a title 

“Machine Learning models” OR “Machine learning algorithms” OR “Machine Learning techniques” AND 

“fraud detection” AND “e-platforms” OR “electronic-platforms.” 
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and abstract basis in Rayaan. There was an initial conflict on 20 articles which was subsequently resolved. A 

total of 1,894 records were further excluded. The remaining 142 included articles were exported from 

“Rayyan” into Microsoft Excel for further screening based on their introductions, methodologies, findings, 

and conclusions. The eligibility criteria used is defined in the following section. 
 

 

 
 

Figure 3. PRISMA flow diagram 
 

 

2.7.  Defining inclusion and exclusion criteria 

In sub-section 7, we concentrated on examining several factors that affect how financial e-platforms 

operate. The chosen approach enabled us to list and categorize different machine learning models currently in 

use for detecting fraud on financial e-platforms. The review also included the evaluation of the effectiveness 

of different machine learning algorithms in detecting fraud on financial e-platforms. The approach also 

identified relevant data using the inclusion and exclusion criteria and in summarizing the findings.  

 

2.8.  Selection of papers 

“Rayyan” web tool which is designed to help researchers working on systematic reviews, scoping 

reviews, and other knowledge synthesis projects, was used in this review for screening and coding of studies. 

In order to select the relevant papers for the actual analysis we went through three stages of analyses. First, 

we conducted title and abstract screening of the relevant articles by marking them in Rayyan as either 

“included”, “excluded” or “doubtful”. Secondly, in order to refine the selection in the previous stage, the 

introductions and conclusions of the selected papers were analysed. Finally, the third stage of the analyses 

involved complete reading of selected articles, quality check and comparative analysis.  

Thus, the 142 articles exported to Microsoft Excel were subjected to the following eligibility 

criteria: i) Reports not retrieved (unavailability of full text) and ii) Reports or articles that are out of scope. 

The screening results indicated that out of the total of 142 papers, 55 full-text papers were 

unavailable and 43 papers were out of scope. The remaining papers included for further analyses were 44. 

 

2.9.  Extraction of answers to research questions 

At this stage, the research questions were answered by analyzing the selected papers in the previous 

step with the aid of a spreadsheet. As we read each of the selected papers, the possible answers extracted was 

posted directly in the spreadsheet. Figure 4 shows a snapshot of the spreadsheet used for the final stage of 

screening while the results of the research are presented in the Findings and discussions section.  

 



Comput Sci Inf Technol  ISSN: 2722-3221  

 

 The best machine learning model for fraud detection on e-platforms: … (Alimatu – Saadia Yussiff) 

199 

 
 

Figure 4. Snapshot of screening spreadsheet 

 

 

3. RESULTS AND DISCUSSION  

This section gives a detailed discussion of the results of the analysis. The initial database search 

returned a total of 2,071 results. After applying the selection and eligibility criteria, 44 publications were left 

for detailed analysis and the results are presented in the following sub-sections.  

 

3.1.  Common types of fraud on e-platforms 

The first research question was to investigate the common types of fraud on e-platforms, after a 

thorough analysis of the 44 articles included in the studies, the result revealed that the common types of 

electronic frauds on financial e-platforms are: Credit card fraud, banking transaction fraud and E-commerce 

fraud with frequency of 36, 5 and 3 respectively. Therefore, credit card fraud is the most prevalent form of 

fraud on e-platforms. Figure 5 and Table 1 summarizes the results. 
 

 

 
 

Figure 5. Types of electronic fraud 

 
 

Table 1. Types of electronic fraud 
No. Type of Fraud Frequency Percentage (%) 

1 Credit Card 36 81.82 

2 Banking Transaction 5 11.36 

3 E-commerce 3 6.82 

 
 

3.2.  Machine learning algorithms used for fraud detection on e-platforms 

The second research question was to find out which machine learning algorithms are used for fraud 

detection on e-platforms. Table 2 is the summary of results obtained from the 44 articles we worked with. It 
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is evident from Table 2 and Figure 6 that 23 different machine learning models were used in the 44 different 

publications we worked with.  

 

 

Table 2. Different machine learning algorithms for fraud detection 
No. Machine Learning (ML) Algorithm Reference Frequency 

of Usage 

1 Long Short-Term Memory (LSTM) [9]-[11] 3 

2 Logistic Regression (LR) [10], [12], [13], [14]–[29] 19 

3 Random Forest (RF) [10], [12], [15], [17]–[24], [26]–[40] 27 

4 XGBoost [14], [22], [21], [35], [40], [41] 6 
5 AdaBoost [9], [30], [21], [44], [45], [40], [42], [43] 9 

6 Support Vector Machine (SVM) [13], [15]-[17], [19], [20], [26], [27], [29], [31], [32], [46]-[49] 15 

7 Naïve Bayes (NB) [10], [15], [25]–[27], [31], [49], [50] 8 

8 K-Nearest Neighbour (KNN) [10], [11, [13], [17], [19], [21], [25–27], [31], [48], [50] 12 

9 Multi-Layer Perceptron (MLP) [10], [21], [32], [50] 4 
10 Complement Naïve Bayes [10] 1 

11 Gaussian Naïve Bayes [10], [19], [21], [50] 4 

12 Bernouli Naïve Bayes [10] 1 

13 Light Gradient Boosting Machine (LGBM) [10], [14], [16] 3 

14 Decision Tree [10], [13], [15], [17], [18], [21]–[24], [28], [35], [39] 12 
15 Gradient Boost [15], [21], [23], [30] 4 

16 Convolutional Neural Network (CNN) [9], [11], [19], [45] 4 

17 Isolation Forest [32], [51], 2 

18 Artificial Neural Network (ANN) [15], [20], [23], [25], [48], [49], [52] 7 

19 k-means [19, [45], [52], 3 
20 Linear Regression [35] 1 

21 J48 Algorithm [38] 1 

22 Perceptron [10], [25], [26] 3 

23 CatBoost [40] 1 

 

 

Figure 6 also illustrates that the least used models are complement naïve Bayes, Bernoulli naïve 

Bayes, isolation forest, linear regression, J48, and CatBoost algorithms. Other algorithms like K-nearest 

neighbor (KNN), decision tree, support vector machine (SVM), logistic regression, and random forest fell 

within the top five with random forest being the most used machine learning algorithm for fraud detection. 

 

 

 
 

Figure 6. Different machine learning algorithms for fraud detection 

 

 

3.3.  The best machine learning algorithms used on e-platforms for fraud detection 

Research question three was to determine the best machine learning algorithms used on e-platforms 

for fraud detection. In order to answer this question, we compared and analyzed the performance of the top 

five machine learning algorithms based on their frequency of usage. The performance metric used in this 

review is accuracy. Since most of the authors used a common dataset (transactions made by credit cards in 

September 2013 by European cardholders.), it will be prudent to analyze and compare their performances. 

The results from the analysis are presented in Figure 7. 
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Figure 7. Average accuracies of top 5 (frequency of usage) ML algorithms 

 
 

Results from Figure 7 demonstrated that the Decision Tree algorithm performs the least with an 

average accuracy of 92.81%. This is followed by logistic regression, SVM, KNN, and random forest 

algorithm with an average accuracy of 93.16, 94.87, 96.54, and 96.67 respectively. The result also indicated 

that, even though the KNN ranked 4th in terms of frequency of usage as shown in Table 2, it ranked 2nd in 

terms of performance with an accuracy of 96.54% as illustrated in Figure 7. The logistic regression algorithm 

ranked 2nd in terms of frequency of usage but it is the 4th best in terms of performance with an average 

accuracy of 93.16%. Also, The SVM algorithm ranked 3rd in terms of frequency of usage and ranked 3rd in 

terms of performance with an average accuracy of 94.87%. More importantly, the random forest algorithm 

ranked 1st in terms of frequency of usage and ranked 1st in terms of performance with an average accuracy of 

96.67%.  
 

 

4. CONCLUSION 

This research revealed that credit card fraud is more common in the area of financial fraud on e-

platforms. Based on our systematic literature review credit card fraud accounted for 82.61% of the financial 

fraud cases on e-platforms. Secondly, this review identified 23 different machine-learning algorithms that 

were used to detect fraud on e-platforms. Notable amongst them is random forest which had the highest 

frequency of usage followed by logistic regression and support vector machine, whereas algorithms like 

linear regression, Bernouli naïve Bayes, J48 algorithm, and CatBoost had the lowest frequency of usage. The 
research also revealed that the predominant usage of a model does not guarantee its superior performance, as 

exemplified by the cases of KNN and logistic regression. The logistic regression algorithm ranked 2nd in 

terms of frequency of usage but ranked 4th best in terms of performance with an average accuracy of 93.16%. 

On the contrary, the KNN ranked 4th in terms of frequency of usage but ranked 2nd in terms of performance 

with an accuracy of 96.54%. The random forest algorithm turned out to be the best machine learning 

algorithm as it is ranked first in the frequency of usage analysis and first in the performance analysis with an 

average accuracy of 96.67%. Hence, the random forest algorithm should be considered ahead of other 

machine learning algorithms for such fraud detection analysis on e-platforms. By identifying the strengths 

and weaknesses of different approaches, this review can help guide future research and inform the 

development of more effective fraud detection systems.Overall, this review has identified the kinds of fraud 

on financial e-platforms, and proclaimed the best and least ML algorithm for fraud detection on financial e-

platform. This can help guide future research and inform the development of more effective fraud detection 

systems. This review was limited to financial fraud detection and accuracy was the only performance metric 

used for the comparative analysis. Future work could therfore consider performance metrics like recall and 

precision in the comparative analysis. 
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