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The internet has been instrumental in the development and facilitation of
online payment systems. However, its associated fraudulent activities on e-
platforms cannot be overlooked. As a result, there has been a growing
interest in the application of machine learning (ML) algorithms for fraud
detection on financial e-platforms. The goal of this research is to identify
common types of fraud on financial e-platform, highlight different machine
learning algorithms employed in fraud detection, and derive the best
machine learning algorithms for fraud detection on e-platforms. To achieve
this goal, the research followed a nine steps systematic review approach to
retrieve Journals and conference publications from science direct, Google
Scholar and IEEE Xplore between 2018 and 2023. Out of 2,071 articles
identified and screened, 44 publications (23 articles and 21 conference
proceedings) satisfied the inclusion criteria for further analysis. The random
forest algorithm turned out to be the best ML algorithm because it ranked
first in the frequency of usage analysis and ranked first in the performance
analysis with an average accuracy of 96.67%. Overall, this review has
identified the kinds of fraud on financial e-platforms, and proclaimed the
best and least ML algorithm for fraud detection on financial e-platform. This
can help guide future research and inform the development of more effective
fraud detection systems.
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1. INTRODUCTION

The advancement in technology and the evolution of the internet have paved the way for the
establishment of modern services, including e-commerce and financial transactions. Traditional buyer-seller
relationships and the shopping experience for many consumers have been significantly altered by e-
commerce [1]. E-commerce and the widespread use of online banking have contributed to a recent uptick in
the volume of monetary transactions. The Internet has been instrumental in the development and facilitation
of online payment systems. However, this increased convenience presents several obstacles, the most
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significant of which is the problem of fraudulent activities on these e-platforms [2]. Presently, online
financial fraud has become a more intricate and difficult challenge to solve [3].

The most typical forms of fraud that can be committed on online systems that may cost consumers
and e-commerce sites a lot of money include Payment fraud (criminals commit payment fraud by either
stealing financial details or forging credentials to use for online purchases). Account takeover fraud
(Fraudsters impersonate a real user in order to make illegal purchases or obtain sensitive information).
Phishing scams (Scammers employ phishing emails, texts, and social media posts to fool consumers into
divulging sensitive information by making it look to come from a trusted organization, such as a bank or
online retailer). Identity theft (Theft of sensitive personal information, such as social security numbers or
credit card data, can lead to the opening of fake accounts and the making of fraudulent purchases).
Chargeback fraud (To commit chargeback fraud, a user must erroneously assert that they did not get the
purchased products or services).

We must learn to recognize the red flags of online fraud and take preventative measures. The
traditional methods of fraud detection on e-platforms, such as rule-based systems and manual review
processes, are often unable to keep up with the rapidly evolving tactics of fraudsters. These methods are also
resource-intensive and time-consuming, making them inefficient and often ineffective in detecting and
preventing fraud [4]. Consequently, there has been a growing interest in the application of machine learning
(ML) models for fraud detection on e-platforms. The goal of this research is to identify common types of
fraud on financial e-platform, highlight which ML model are used for fraud detection on financial e-
platforms and also ascertain the best ML for fraud detection on e-platforms in terms of performance matrics.

A machine learning algorithm is a type of algorithm that can learn from data and perform a task
without being explicitly programmed to do so. These algorithms are "soft coded" in the sense that they
improve the task at hand through iteratively changing or adapting their underlying structure [5]. By
measuring prediction mistakes during the training phase, machine learning has an intelligent system that
allows it to continuously learn [6]. Machine learning has proven to be a promising approach for fraud
detection in e-commerce due to its ability to learn from large amounts of data and identify patterns that
traditional methods may miss. By leveraging the power of ML, e-commerce platforms can build more
effective fraud detection systems that are faster, more accurate, and less resource-intensive.

According to [5], depending on how the data is labeled, machine learning can be categorized as
supervised, semi-supervised, or unsupervised. Supervised learning is the process of utilizing labeled datasets
to train algorithms that effectively classify data or predict outcomes (e.g., classification and regression).
Semi-supervised learning is a hybrid of supervised and unsupervised learning in which a portion of the data
is partially labeled and the labeled portion is used to infer the unlabeled portion. In unsupervised learning, the
learning system receives only input samples (e.g., clustering and estimation of probability density function).

However, the use of ML models for fraud detection on e-platforms is not without its own set of
challenges. The performance of these models depends on the quality and size of the training data, the choice
of appropriate features and algorithms, and the complexity of the fraud detection problem. To gain a better
understanding of machine learning models for fraud detection on e-platforms, a systematic literature review
is necessary. Such a review can provide an overview of the existing research on the topic, identify the
different types of machine learning models that have been used for fraud detection, and highlight the best
models. In this regard, the current study was conducted to perform a systematic literature review to analyze
research studies to identify the common types of fraud on financial e-platforms and to determine the best
machine learning algorithms in terms of performance metrics that have been used for fraud detection on e-
platforms.

2. METHOD

This section describes in detail how we carried out the methodological literature review. Based on
the advantages of systematic literature review (SLR) such as comprehensiveness, reliability and unbias
coverage of relevant studies [7], this research adopted the SLR steps in [8] to conduct the SLR by following the
key steps in Figure 1. The application of Figure 1 to our research, are further described in subsections 2.1-2.9.

2.1. Defining the research questions

According to [8], the first stage of SLR is to establish appropriate research questions. These
questions should be focused, clear and guide what we wanted to find out from the research. In this regard, we
derived the following three research questions (RQs) from our pre-planned topic:
RQ1: What are the common types of fraud on e-platforms?
RQ2: Which machine learning algorithms are used for Fraud detection on e-platforms?
RQ3: What are the best machine learning algorithms used on e-platforms for fraud detection?
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Figure 1. Systematic literature review process [8]

2.2. Defining concepts and keywords

In the second step, we then came out with the following three concepts in relation to the topic and
research questions;
Concept 1: “Machine learning models”
Concept 2: “Fraud detection”
Concept 3: “e-platforms”

By considering the synonyms, other spelling variations and abbreviations of the concepts, we then
derived the following keywords: “Machine Learning models”, “Machine Learning techniques”, “Machine
learning algorithms”, “fraud detection”, “e-platforms”, and electronic platforms.

2.3. Defining search string

The above keywords were then merged using control vocabulary or Boolean operators. Thus, using
the “population, intervention, comparison, outcome” (PICO) and the “MESH” approach, we came out with
the following search string as shown in Figure 2.

“Machine Learning models” OR “Machine learning algorithms” OR “Machine Learning techniques” AND
“fraud detection” AND “e-platforms” OR “electronic-platforms.”

Figure 2. Search string

2.4. Defining search engines

In this sub-section 4, search engines were defined. Our methodology used a suitable selection of
databases to obtain comprehensive coverage of the literature and to raise the likelihood of discovering highly
suitable articles. Consequently, the following electronic literature databases were included in our search;
ScienceDirect, Google Scholar, and IEEEXplore.

2.5. String refinement

The string defined in sub-section 2.3 was tested in one of the search engines (Google Scholar). Once
the string was applied, we verified if the returned papers were relevant. Known papers that are potential
candidates for primary studies in this review (which exist on these engines) appeared in the search. In cases
where there were no relevant results, the search string was parsed again to be calibrated. At the end, the
refinement of the search criteria was done in each database.

2.6. Search string execution and search results

Once the search string was defined, it was adapted to each of the selected three search engines. As
the search went on, the search results were documented, the number of articles each search returned, and the
date of execution were also documented. Figure 3 demonstrated the resulting preferred reporting items for
systematic reviews and meta-analyses (PRISMA) flow diagram derived from the research.

Thus, at the end of searching all the three databases, we found a total of 2,071 articles. These articles
were imported into Rayaan to begin the systematic review process. First of all, 35 out of the 2,071 articles
were de-duplicated in the “Rayaan” web tool. The remaining 2,036 articles were further screened on a title
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and abstract basis in Rayaan. There was an initial conflict on 20 articles which was subsequently resolved. A
total of 1,894 records were further excluded. The remaining 142 included articles were exported from
“Rayyan” into Microsoft Excel for further screening based on their introductions, methodologies, findings,
and conclusions. The eligibility criteria used is defined in the following section.

‘ Identification of studies via databases and registers

—
- Records removed before
K] screening:
g Records identified from: Duplicaterecords
!E Databases (n=2071) > removed:
] Registers (n=0) (n=235)
= Records marked as
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-
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< Reports of included studies
P
S (n=0)

Figure 3. PRISMA flow diagram

2.7. Defining inclusion and exclusion criteria

In sub-section 7, we concentrated on examining several factors that affect how financial e-platforms
operate. The chosen approach enabled us to list and categorize different machine learning models currently in
use for detecting fraud on financial e-platforms. The review also included the evaluation of the effectiveness
of different machine learning algorithms in detecting fraud on financial e-platforms. The approach also
identified relevant data using the inclusion and exclusion criteria and in summarizing the findings.

2.8. Selection of papers

“Rayyan” web tool which is designed to help researchers working on systematic reviews, scoping
reviews, and other knowledge synthesis projects, was used in this review for screening and coding of studies.
In order to select the relevant papers for the actual analysis we went through three stages of analyses. First,
we conducted title and abstract screening of the relevant articles by marking them in Rayyan as either
“included”, “excluded” or “doubtful”. Secondly, in order to refine the selection in the previous stage, the
introductions and conclusions of the selected papers were analysed. Finally, the third stage of the analyses
involved complete reading of selected articles, quality check and comparative analysis.

Thus, the 142 articles exported to Microsoft Excel were subjected to the following eligibility
criteria: i) Reports not retrieved (unavailability of full text) and ii) Reports or articles that are out of scope.

The screening results indicated that out of the total of 142 papers, 55 full-text papers were
unavailable and 43 papers were out of scope. The remaining papers included for further analyses were 44.

2.9. Extraction of answers to research questions

At this stage, the research questions were answered by analyzing the selected papers in the previous
step with the aid of a spreadsheet. As we read each of the selected papers, the possible answers extracted was
posted directly in the spreadsheet. Figure 4 shows a snapshot of the spreadsheet used for the final stage of
screening while the results of the research are presented in the Findings and discussions section.
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Figure 4. Snapshot of screening spreadsheet

3. RESULTS AND DISCUSSION

This section gives a detailed discussion of the results of the analysis. The initial database search
returned a total of 2,071 results. After applying the selection and eligibility criteria, 44 publications were left
for detailed analysis and the results are presented in the following sub-sections.

3.1. Common types of fraud on e-platforms

The first research question was to investigate the common types of fraud on e-platforms, after a
thorough analysis of the 44 articles included in the studies, the result revealed that the common types of
electronic frauds on financial e-platforms are: Credit card fraud, banking transaction fraud and E-commerce
fraud with frequency of 36, 5 and 3 respectively. Therefore, credit card fraud is the most prevalent form of
fraud on e-platforms. Figure 5 and Table 1 summarizes the results.

Frequency
40
30
20 5 3
10 a—y Ay
0
Credit Card Banking E-commerce
Transaction
Figure 5. Types of electronic fraud
Table 1. Types of electronic fraud
No. Type of Fraud Frequency  Percentage (%)
1 Credit Card 36 81.82
2 Banking Transaction 5 11.36

E-commerce 3 6.82

3.2. Machine learning algorithms used for fraud detection on e-platforms
The second research question was to find out which machine learning algorithms are used for fraud
detection on e-platforms. Table 2 is the summary of results obtained from the 44 articles we worked with. It
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is evident from Table 2 and Figure 6 that 23 different machine learning models were used in the 44 different
publications we worked with.

Table 2. Different machine learning algorithms for fraud detection

No. Machine Learning (ML) Algorithm Reference Frequency
of Usage
1 Long Short-Term Memory (LSTM) [9]-[11] 3
2 Logistic Regression (LR) [10], [12], [13], [14]-[29] 19
3 Random Forest (RF) [10], [12], [15], [17]-[24], [26]-[40] 27
4  XGBoost [14], [22], [21], [35], [40], [41] 6
5  AdaBoost [9], [30], [21], [44], [45], [40], [42], [43] 9
6  Support Vector Machine (SVM) [13], [15]-[17], [19], [20], [26], [27], [29], [31], [32], [46]-[49] 15
7 Naive Bayes (NB) [10], [15], [25]-[27], [31], [49], [50] 8
8 K-Nearest Neighbour (KNN) [10], [11, [13], [27], [19], [21], [25-27], [31], [48], [50] 12
9 Multi-Layer Perceptron (MLP) [10], [21], [32], [50] 4
10  Complement Naive Bayes 10 1
11  Gaussian Naive Bayes [10], [19], [21], [50] 4
12 Bernouli Naive Bayes [10] 1
13 Light Gradient Boosting Machine (LGBM) [10], [14], [16] 3
14 Decision Tree [10], [13], [15], [17], [18], [21]-[24]. [28], [35]. [39] 12
15  Gradient Boost [15], [21], [23], [30] 4
16  Convolutional Neural Network (CNN) [9], [11], [19], [45] 4
17  Isolation Forest [32], [51], 2
18  Artificial Neural Network (ANN) [15], [20], [23], [25], [48], [49], [52] 7
19  k-means [19, [45], [52], 3
20  Linear Regression [35] 1
21 J48 Algorithm [38] 1
22 Perceptron [10], [25], [26] 3
23 CatBoost [40] 1

Figure 6 also illustrates that the least used models are complement naive Bayes, Bernoulli naive
Bayes, isolation forest, linear regression, J48, and CatBoost algorithms. Other algorithms like K-nearest
neighbor (KNN), decision tree, support vector machine (SVM), logistic regression, and random forest fell
within the top five with random forest being the most used machine learning algorithm for fraud detection.

Frequency of Usage
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Figure 6. Different machine learning algorithms for fraud detection

3.3. The best machine learning algorithms used on e-platforms for fraud detection
Research question three was to determine the best machine learning algorithms used on e-platforms
for fraud detection. In order to answer this question, we compared and analyzed the performance of the top
five machine learning algorithms based on their frequency of usage. The performance metric used in this
review is accuracy. Since most of the authors used a common dataset (transactions made by credit cards in
September 2013 by European cardholders.), it will be prudent to analyze and compare their performances.
The results from the analysis are presented in Figure 7.
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Figure 7. Average accuracies of top 5 (frequency of usage) ML algorithms

Results from Figure 7 demonstrated that the Decision Tree algorithm performs the least with an
average accuracy of 92.81%. This is followed by logistic regression, SVM, KNN, and random forest
algorithm with an average accuracy of 93.16, 94.87, 96.54, and 96.67 respectively. The result also indicated
that, even though the KNN ranked 4" in terms of frequency of usage as shown in Table 2, it ranked 2" in
terms of performance with an accuracy of 96.54% as illustrated in Figure 7. The logistic regression algorithm
ranked 2" in terms of frequency of usage but it is the 4™ best in terms of performance with an average
accuracy of 93.16%. Also, The SVM algorithm ranked 3 in terms of frequency of usage and ranked 3™ in
terms of performance with an average accuracy of 94.87%. More importantly, the random forest algorithm
ranked 1% in terms of frequency of usage and ranked 1% in terms of performance with an average accuracy of
96.67%.

4. CONCLUSION

This research revealed that credit card fraud is more common in the area of financial fraud on e-
platforms. Based on our systematic literature review credit card fraud accounted for 82.61% of the financial
fraud cases on e-platforms. Secondly, this review identified 23 different machine-learning algorithms that
were used to detect fraud on e-platforms. Notable amongst them is random forest which had the highest
frequency of usage followed by logistic regression and support vector machine, whereas algorithms like
linear regression, Bernouli naive Bayes, J48 algorithm, and CatBoost had the lowest frequency of usage. The
research also revealed that the predominant usage of a model does not guarantee its superior performance, as
exemplified by the cases of KNN and logistic regression. The logistic regression algorithm ranked 2" in
terms of frequency of usage but ranked 4™ best in terms of performance with an average accuracy of 93.16%.
On the contrary, the KNN ranked 4" in terms of frequency of usage but ranked 2" in terms of performance
with an accuracy of 96.54%. The random forest algorithm turned out to be the best machine learning
algorithm as it is ranked first in the frequency of usage analysis and first in the performance analysis with an
average accuracy of 96.67%. Hence, the random forest algorithm should be considered ahead of other
machine learning algorithms for such fraud detection analysis on e-platforms. By identifying the strengths
and weaknesses of different approaches, this review can help guide future research and inform the
development of more effective fraud detection systems.Overall, this review has identified the kinds of fraud
on financial e-platforms, and proclaimed the best and least ML algorithm for fraud detection on financial e-
platform. This can help guide future research and inform the development of more effective fraud detection
systems. This review was limited to financial fraud detection and accuracy was the only performance metric
used for the comparative analysis. Future work could therfore consider performance metrics like recall and
precision in the comparative analysis.
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