Optimization of an inset-fed calculations for rectangular microstrip antenna

Sulwan Dase, Irawati Razak
Department of Electrical Engineering, State of Polytechnic of Ujung Pandang, Makassar, Indonesia

ABSTRACT
This paper offers an alternative solution to produce a formula to calculate the inset-fed \(y_0 \) feed distance from the edge of the patch in order to obtain the impedance of a rectangular patch microstrip antenna as close to 50 Ohm as possible. The basic calculation refers to Ramesh's calculation formula to calculate the inset-fed \(y_0 \) on a rectangular patch microstrip antenna. From this research it is hoped that a number of correction factors will be obtained which will be multiplied by the Ramesh formula in order to obtain an inset-fed calculation which results in a lower return loss \(S_{11} \) and voltage standing wave ratio (VSWR). From several calculation attempts, the approximate value for the correction factor is \(s = 0.83477 \). This \(s \) correction factor is then multiplied by Ramesh's calculation formula. In this experiment, a microstrip antenna was simulated using an FR4 epoxy printed circuit board (PCB) with a relative permittivity, \(\varepsilon_r = 4.4 \), with a thickness of \(h = 1.6 \) mm. The specified antenna nominal input impedance is 50 Ohms. The transmission line used is a microstrip line with a characteristic impedance of 50 Ohm. The test method used is to compare the results of simulation calculations using the Ramesh formula with the results of simulation calculations using the Ramesh formula multiplied by the correction factor. Tests are carried out using varying working frequencies. From the experimental results it can be seen that the average Return Loss \(S_{11} \) and VSWR of the antenna are lower when using the Ramesh formula with a correction factor compared to the original Ramesh formula.

This is an open access article under the CC BY-SA license.

1. INTRODUCTION
Since Desachamps introduced microstrip antennas in 1953 [1], research and development of microstrip antennas for various applications has increased, with the number of scientific articles published in IEEE journals totaling 1360 papers [2]. The first attempt to manufacture microstrip antennas was carried out by Howel [3] and reported in 1972. The scientific article on microstrip antennas was first published by Munson [4] in the IEEE Journal Transactions on Antennas and Propagation in January 1974.

Analysis with transmission line method (TLM) modeling assumes that “the radiating part of the antenna occurs at both ends of the antenna which resembles a slot. Electromagnetic fields are emitted from each slot on either end of the patch antenna. The two fields emitted from the two slots add up to each other in a superposition and form a complete antenna radiation pattern” [5].

Several methods of feeding techniques have been proposed. Rectangular microstrip patch antennas are known to feed rectangular microstrip patch antennas, both contact and non-contact [6]–[11]. Contact feeding includes: (a) patch antenna edge feeding (final feeders), (b) coaxial bait feeding, (c) inset feeding.

Research by Samaras [12], Basilio [13] and Hu [14] reported that the value of the input resistance of a rectangular microstrip antenna will decrease slowly when the feed point is away from the edge of the antenna patch, and will be zero if the feed point is in the middle of the patch antenna. Thus, at some distance from the edge of the patch, the input resistance of the antenna will be 50 Ohms. If the distance from the edge of the antenna patch to the 50 Ohm input resistance point is expressed by \(y_0 \), a formula is needed to determine the distance of \(y_0 \).

Matin and Sayeed [15], Carver [8], [16], [17] proposed a method of calculating the input resistance of a microstrip rectangular patch antenna as a function,

\[
R_{in}(y = y_0) = \frac{1}{2G_1G_{12}} \cos^2 \left(\frac{\pi}{L} y_0 \right)
\]

\[
R_{in}(y = 0) \cos^2 \left(\frac{\pi}{L} y_0 \right)
\]

Ramesh proposed [18] a formula to calculate the distance \((y_0) \) from the edge of the patch,

\[
y_0 = \frac{L}{2} \times 10^{-4} (0.001699\epsilon_r^7 + 0.13761\epsilon_r^6 - 6.1783\epsilon_r^5 + 93.187\epsilon_r^4 - 682.69\epsilon_r^3 + 2561.9\epsilon_r^2 - 4043\epsilon_r + 6697)
\]

where \(L \) is the length of the microstrip patch antenna and \(\epsilon_r \) is the dielectric constant of the substrate.

Figure 1, shows a typical rectangular patch antenna TLM topology, consisting of a long \(L \) ideal, lossless transmission line with a characteristic impedance \(Z_0 \), terminated at both ends by a network of identical passive ports. In Figure 2, shows the inset-fed terminal with the feed point \(y_0 \) from the edge of the patch.

2. METHOD

In this paper, we use the experimental method to find the approximation formula in order to obtain more accurate calculation results by referring to the Ramesh formula to determine the Inset-fed distance from the patch antenna edge as written in (2). Working frequency was set at 1 GHz, 1.5 GHz, 1.8 GHz, 2.0 GHz, 2.1 GHz and 2.3 GHz, 2.5 GHz, 3.0 GHz, and 3.5 GHz.
The first step is to calculate y_0 using the Ramesh formula. The second step, do the simulation. The third step is changing the y_0 distance gradually so that the input resistance is 50 Ohm and the SWR of the antenna is close to 1.0, as well as the lowest return loss (S_{11}). Then a comparison is made between the distance (y_0') according to the experiment to the distance y_0 according to the Ramesh formula. The comparison between the distance according to the experimental results and the distance according to the Ramesh formula produces a number of correction factors "s" for the Ramesh equation. In this experiment, the transmission line spacing (x) to the antenna is set at 1 mm and 1.5 mm at each working frequency. Figure 3 shows geometry construction of a rectangular patch antenna using the inset-fed method.

The calculation of the patch antenna dimensions follows as [19] and [20] equations with the following steps,

- Calculating the patch width (W) using the equation

$$W = \frac{c}{2f} \sqrt{\frac{2}{\varepsilon_r+1}}$$

(3)

- Calculate the effective permittivity of the substrate ε_e,

$$\varepsilon_e = \frac{1}{2} \left(\varepsilon_r + 1 + (\varepsilon_r - 1) \left(1 + \frac{12}{W} \frac{h}{W} \right)^{-1} \right)$$

(4)

- Calculate the patch length using the equation,

$$L_{\text{eff}} = \frac{c}{2f} \sqrt{\frac{1}{\varepsilon_e}}$$

(5)

- Calculates the ΔL patch length, due to the fringing field effect,

$$\Delta L = 0.412h \left(\frac{\varepsilon_e+0.3}{W} + 0.264 \right)$$

$$\left(\frac{\varepsilon_e-0.258}{W} + 0.813 \right)$$

(6)

- Calculate the actual length of the patch antenna using the equation,

$$L = L_{\text{eff}} - 2\Delta L$$

(7)

The material of the antenna used FR4 epoxy printed circuit board (PCB) board with a substrate thickness of $h = 1.6$ mm and $\varepsilon_r = 4.4$. The results of calculating the dimensions of the antenna are shown in Table 1.
Table 1. Dimension of antenna

<table>
<thead>
<tr>
<th>Freq (GHz)</th>
<th>L (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>71.312763252152</td>
<td>91.287092917528</td>
</tr>
<tr>
<td>1.5</td>
<td>47.414170319053</td>
<td>60.858061945018</td>
</tr>
<tr>
<td>1.8</td>
<td>39.435120371176</td>
<td>50.7150516208492</td>
</tr>
<tr>
<td>2.0</td>
<td>35.44361286606</td>
<td>45.643546458764</td>
</tr>
<tr>
<td>2.1</td>
<td>33.728628022213</td>
<td>43.470044246442</td>
</tr>
<tr>
<td>2.3</td>
<td>30.748033312001</td>
<td>39.690040398925</td>
</tr>
<tr>
<td>2.5</td>
<td>28.242105653345</td>
<td>36.514837167011</td>
</tr>
<tr>
<td>3.0</td>
<td>23.431760501435</td>
<td>30.429030972509</td>
</tr>
<tr>
<td>3.5</td>
<td>19.987974567339</td>
<td>26.082026543765</td>
</tr>
</tbody>
</table>

The next step is to calculate the inset-fed length and transmission line gap (x) to the antenna patch. In this experiment, the gap (x) between the microstrip line and the patch antenna was set from 1 mm, 1.5 mm. As a comparison, we will calculate the inset-fed distance from the edge of the patch (yo) with the Ramesh equation [17], and Vinayak [21],

\[y_o = \frac{L}{2} \times 10^{-4}(0.001699\varepsilon_f^2 + 0.13761\varepsilon_f^6 - 6.1783\varepsilon_f^5 + 93.187\varepsilon_f^4 - 682.69\varepsilon_f^3 + 2561.9\varepsilon_f^2 - 4043\varepsilon_f + 6697) \]

(8)

The next step is to do an experimental test to obtain a correction factor "s" in order to obtain the optimal yo distance in order to obtain an antenna impedance of 50 ohms. The number of correction factor "s" is tested: (1) three rectangular microstrip antennas are designed that work at frequencies of 1 GHz, 1.5 GHz, 1.8 GHz, 2.0 GHz, 2.1 GHz and 2.3 GHz, 2.5 GHz, 3.0 GHz, and 3.5 GHz, with a distance of yo following Ramesh's equation, then (2) also designed three antennas with a frequency the same, but the distance yo using the developed Ramesh equation. Furthermore, the simulation is carried out and the results are compared.

In this experiment, the gap (x) between the microstrip line and the patch antenna was set from 1 mm and 1.5 mm. The antenna material is PCB Epoxy FR4 with a thickness of h = 1.6 mm and \(\varepsilon_r = 4.4 \). Through several experiments, it was concluded that the calculation of \(y_o \) in the Ramesh formula becomes more accurate when the Ramesh equation is multiplied by a correction factor of \(s = 0.83477 \), such that the Ramesh equation becomes,

\[y_o' = (s) \left(\frac{L}{2} \times 10^{-4}(0.001699\varepsilon_f^2 + 0.13761\varepsilon_f^6 - 6.1783\varepsilon_f^5 + 93.187\varepsilon_f^4 - 682.69\varepsilon_f^3 + 2561.9\varepsilon_f^2 - 4043\varepsilon_f + 6697) \right) \]

(9)

\[y_o' = \left(0.83477\right) \left(\frac{L}{2} \times 10^{-4}(0.001699\varepsilon_f^2 + 0.13761\varepsilon_f^6 - 6.1783\varepsilon_f^5 + 93.187\varepsilon_f^4 - 682.69\varepsilon_f^3 + 2561.9\varepsilon_f^2 - 4043\varepsilon_f + 6697) \right) \]

(10)

3. RESULTS AND DISCUSSION

At the initial stage, several experiments were carried out to determine the ideal yo distance to produce the smallest return loss (RL). The best experimental results for the ideal yo distance are then compared to the results of Ramesh's calculations. Comparisons were made based on the same working frequency, and a number was obtained which became the correction factor for Ramesh's formula of \(s = 0.83477 \). The next stage is to design a rectangular patch microstrip antenna by applying the calculation of the distance yo according to Ramesh and according to the results of the development of the Ramesh formula.

From (8), the inset-fed distance \(y_o \) calculated to be applied to the rectangular patch microstrip antenna design with operating frequencies: 1 GHz, 1.5 GHz, 1.8 GHz, 2.0 GHz, 2.1 GHz and 2.3 GHz, 2.5 GHz, 3.0 GHz, and 3.5 GHz. The results of the simulation calculations are shown in Table 2. Then by using the Ramesh formula development equation in (10), the inset-fed distance is calculated which is given the notation \((y_o') \) to be applied to the rectangular patch microstrip antenna design with working frequency: 1 GHz, 1.5 GHz, 1.8 GHz, 2.0 GHz, 2.1 GHz and 2.3 GHz, 2.5 GHz, 3.0 GHz, and 3.5 GHz. The results of calculations and simulations are as in Table 2.

In general, it can be seen that applying the correction factor to the Ramesh equation to calculate the inset-fed distance yo on a rectangular patch microstrip antenna, can significantly improve the performance of
Optimization of an inset-fed calculations for rectangular microstrip antenna (Sulwan Dase)

Table 2. Calculation result of return loss and VSWR

<table>
<thead>
<tr>
<th>No</th>
<th>Freq (GHz)</th>
<th>y_o (mm)</th>
<th>x (mm)</th>
<th>Ramesh Formula</th>
<th>Return Loss (dB)</th>
<th>VSWR</th>
<th>Ramesh Formula with correction factor</th>
<th>Return Loss (dB)</th>
<th>VSWR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>21.90175702</td>
<td>1.0</td>
<td>-9.1560</td>
<td>2.0698</td>
<td>18.2829297</td>
<td>1.0</td>
<td>12.0587</td>
<td>1.6649</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>21.90175702</td>
<td>1.5</td>
<td>-08.6910</td>
<td>2.2669</td>
<td>18.2829297</td>
<td>1.5</td>
<td>-11.1581</td>
<td>1.8234</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>14.56123591</td>
<td>1.0</td>
<td>-16.4449</td>
<td>1.3545</td>
<td>12.1552829</td>
<td>1.0</td>
<td>-19.5423</td>
<td>1.2357</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>14.56123591</td>
<td>1.5</td>
<td>-12.8227</td>
<td>1.5923</td>
<td>12.1552829</td>
<td>1.5</td>
<td>-16.9746</td>
<td>1.3301</td>
</tr>
<tr>
<td>5</td>
<td>1.8</td>
<td>12.11045172</td>
<td>1.0</td>
<td>-18.7029</td>
<td>1.2627</td>
<td>10.10944179</td>
<td>1.0</td>
<td>-21.6158</td>
<td>1.1811</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
<td>12.11045172</td>
<td>1.5</td>
<td>-12.8100</td>
<td>1.4179</td>
<td>10.10944179</td>
<td>1.5</td>
<td>-21.8150</td>
<td>1.0840</td>
</tr>
<tr>
<td>7</td>
<td>2.0</td>
<td>10.88376055</td>
<td>1.0</td>
<td>-16.6782</td>
<td>1.3435</td>
<td>9.08543679</td>
<td>1.0</td>
<td>-19.9351</td>
<td>1.2549</td>
</tr>
<tr>
<td>8</td>
<td>2.0</td>
<td>10.88376055</td>
<td>1.5</td>
<td>-18.3934</td>
<td>1.2735</td>
<td>9.08543679</td>
<td>1.5</td>
<td>-26.3702</td>
<td>1.1009</td>
</tr>
<tr>
<td>9</td>
<td>2.1</td>
<td>10.35769148</td>
<td>1.0</td>
<td>-21.1357</td>
<td>1.1924</td>
<td>8.214487105</td>
<td>1.0</td>
<td>-21.5611</td>
<td>1.1823</td>
</tr>
<tr>
<td>10</td>
<td>2.1</td>
<td>10.35769148</td>
<td>1.5</td>
<td>-17.4350</td>
<td>1.3104</td>
<td>8.214487105</td>
<td>1.5</td>
<td>-26.3679</td>
<td>1.1009</td>
</tr>
<tr>
<td>11</td>
<td>2.3</td>
<td>9.442197256</td>
<td>1.0</td>
<td>-22.6716</td>
<td>1.1587</td>
<td>8.782063003</td>
<td>1.0</td>
<td>-20.6034</td>
<td>1.2058</td>
</tr>
<tr>
<td>12</td>
<td>2.3</td>
<td>9.442197256</td>
<td>1.5</td>
<td>-20.1849</td>
<td>1.2170</td>
<td>8.782063003</td>
<td>1.5</td>
<td>-22.9918</td>
<td>1.1706</td>
</tr>
<tr>
<td>13</td>
<td>2.5</td>
<td>8.672498668</td>
<td>1.0</td>
<td>-20.0870</td>
<td>1.2198</td>
<td>7.239541713</td>
<td>1.0</td>
<td>-18.6664</td>
<td>1.2633</td>
</tr>
<tr>
<td>14</td>
<td>2.5</td>
<td>8.672498668</td>
<td>1.5</td>
<td>-21.9312</td>
<td>1.3679</td>
<td>7.239541713</td>
<td>1.5</td>
<td>-18.4547</td>
<td>1.2714</td>
</tr>
<tr>
<td>15</td>
<td>3.0</td>
<td>7.194998943</td>
<td>1.0</td>
<td>-23.9592</td>
<td>1.1354</td>
<td>6.006169268</td>
<td>1.0</td>
<td>-16.4755</td>
<td>1.3531</td>
</tr>
<tr>
<td>16</td>
<td>3.0</td>
<td>7.194998943</td>
<td>1.5</td>
<td>-18.8403</td>
<td>1.2581</td>
<td>6.006169268</td>
<td>1.5</td>
<td>-17.7743</td>
<td>1.2968</td>
</tr>
<tr>
<td>17</td>
<td>3.5</td>
<td>6.137242629</td>
<td>1.0</td>
<td>-22.8029</td>
<td>1.1561</td>
<td>5.123186029</td>
<td>1.0</td>
<td>-16.2020</td>
<td>1.3664</td>
</tr>
<tr>
<td>18</td>
<td>3.5</td>
<td>6.137242629</td>
<td>1.5</td>
<td>-15.9437</td>
<td>1.3796</td>
<td>5.123186029</td>
<td>1.5</td>
<td>-23.4085</td>
<td>1.1449</td>
</tr>
</tbody>
</table>

Substrate Parameter: FR4 Epoxy, $\epsilon_r = 4.4$, $h=1.6$ mm.

Figure 4. VSWR graph of Ramesh’s formula compared to Ramesh’s formula with correction factors (x=1 mm)

Figure 5. VSWR graph of Ramesh’s formula compared to Ramesh’s formula with correction factors (x=1.5 mm)

The results of the proposed calculations produce a lower VSWR value at the resonant frequency than the results obtained by Panda [22] and Chemkha [23]. In terms of antenna efficiency, Samarthay et al. [21] experiment obtained greater efficiency.

4. CONCLUSION

Based on the experimental results it can be concluded that calculation of y_o distance using the Ramesh formula with a correction factor $s=0.83477$ results in a lower Return Loss (S11) and VSWR compared to using the original Ramesh formula.

ACKNOWLEDGEMENTS

This research was sponsor and financial support from Ministry of Education, Culture, Research and Technology of the Republic of Indonesia.

REFERENCES

BIOGRAPHIES OF AUTHORS

Sulwan Dase 🇮🇩 🇲🇨 🇱🇰 was born in Bulukumba, Indonesia in 1965. He received a Diploma degree in Telecommunication engineering from Politeknik Institut Teknologi Bandung (Polytechnic of Bandung Institute of Technology) 1989 and Bachelors degree in Telecommunication Engineering from Universitas Hasanuddin (Hasanuddin University) 1997. In 2003 he received a masters degree in Wireless Communication Engineering from Institut Teknologi Bandung (Bandung Institute of Technology, ITB) Indonesia. Currently He is a lecturer and associate professor at the Department of Electrical Engineering of State Polytechnic of Ujung Pandang since 1990 until now. Scientific interests are: antenna, radio link planning, design of microwaves devices, construction and modeling. He can be contacted at email: sulfwandase@poliupg.ac.id.

Irawati Razak 🇮🇩 🇲🇨 🇻🇪 was born in Ujung Pandang, Indonesia in 1975. She received a Bachelors degree in Telecommunication Engineering from Hasanuddin University 1999. In 2006 She received a masters degree in Telecommunication Multimedia study program from Institut Teknologi Sepuluh November (ITS) Indonesia. Currently She is a lecturer and associate professor at the Department of Electrical Engineering of the State Polytechnic of Ujung Pandang since 1999 until now. Scientific interests are: antenna, microwaves devices construction. She can be contacted at email: ira_razak@poliupg.ac.id.