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 Information technology advancements have created big data, necessitating 
efficient techniques to retrieve helpful information. With its capacity to 

recognize and categorize patterns in data, especially the growing amount of 
picture data, deep learning is becoming a viable option. This research aims 
to develop a medical image classification model using chest X-Ray with four 
classes, namely Covid-19, Pneumonia, Tuberculosis, and Normal. The 
proposed method combines the advantages of deep learning and machine 
learning. Three pre-trained CNN models, VGG16, DenseNet201, and 
InceptionV3, extract features from images. The features generated from each 
model are fused to enhance the relevant information. Furthermore, principal 

component analysis (PCA) was applied to reduce the dimensionality of the 
features, and Bayesian optimization was used to optimize the 
hyperparameters of the machine learning algorithms support vector machine 
(SVM), decision tree (DT), and k-nearest neighbors (k-NN). The resulting 
classification model was evaluated based on accuracy, precision, recall, and 
F1-score. The results showed that FF-SVM, which is the proposed model, 
achieved an accuracy of 98.79% with precision, recall, and F1-score of 
98.85%, 98.82%, and 98.84%, respectively. In conclusion, fusing feature 

extraction from multiple CNN models improved the classification accuracy 
of each machine-learning model. It provided reliable and accurate 
predictions for lung image diagnosis using chest X-Ray.  
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1. INTRODUCTION 

Pulmonary diseases such as COVID-19, pneumonia, and tuberculosis are global health problems 

that significantly impact morbidity and mortality rates [1]. Reducing the spread and improving patient 
prognosis requires an early and precise diagnosis. However, there are drawbacks to manually interpreting 

chest medical imaging, such as CT scans and radiographs, including the need for radiologists' knowledge, the 

possibility of human mistakes, and a lack of resources in places with low healthcare access [2]. 

Since the mid-20th century, the world has undergone profound changes thanks to rapid advances in 

information technology, particularly computer technology. Big Data, the result of these developments in the 

information age, is now an important force driving the transformation of various sectors, including 

healthcare. As the number and complexity of medical images increase in the Big Data era, conventional 

approaches to data processing become inadequate to meet the need for accurate and efficient analysis [3]. 

Recent developments, especially in deep learning (DL), have enabled the identifying, measuring, and 

classifying of patterns in image data [4]. DL is an algorithm inspired by how the human brain works, where 
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artificial neural networks function like the network of neurons in our brain to process information and learn 

from experience [5], [6]. One of the most popular DL architectures in image data processing is convolutional 

neural networks (CNN). CNN is specifically designed to extract features representing various contexts of 

image data without feature engineering through convolution layers [7]. Several advanced CNN architectures 

were developed and applied in image data classification and pattern recognition [8]. 

Previous research by Gupta and Chawla [9] evaluated the efficiency of several pre-trained CNN 

models, including VGG16, VGG19, Xception, and ResNet50, along with support vector machine (SVM) 
and logistic regression (LR) for breast cancer classification using histopathology images. The results 

showed that ResNet50+LR achieved the best accuracy (93.27%), outperforming the other models. 

Research by Aslan et al. [10] developed a classification method for COVID-19 diagnosis using chest 

computed tomography (CT) images. They utilized several advanced CNN architectures (AlexNet, 

ResNet18, ResNet50, Inceptionv3, Densenet201, Inceptionresnetv2, MobileNetv2, GoogleNet) that had 

been pre-trained to extract features and classify them using several machine learning algorithms, where the 

DenseNet-SVM architecture gave the highest accuracy of 96.29%. Research by Biswas and Islam [11] 

classifies brain tumors through a hybrid model based on deep CNN (DCNN) and SVM. CNN+SVM 

obtained 96.0% accuracy, 98.0% specificity, and 95.71% sensitivity, higher than other transfer learning 

models (AlexNet, GoogLeNet, and VGG16). 

Previous research has focused on utilizing individual CNN architectures for feature extraction, 

which are then combined with classical machine learning algorithms for classification. Therefore, this study 
proposes a feature fusion approach by fusing features from several pre-trained CNN architectures, namely 

VGG16, DenseNet201, and InceptionV3. This approach aims to utilize the advantages of each architecture in 

extracting different visual representations from medical images, resulting in more informative and rich 

features [12]. The principal component analysis (PCA) dimensionality reduction technique is then used to 

reduce the dimensionality of the data and transform the features into a more compact subspace while 

retaining important information [13]. 

Furthermore, classification is performed using several machine learning algorithms, namely SVM, 

decision tree (DT), and K-nearest neighbors (k-NN), which are known for their respective advantages. SVM 

offers significant advantages with its ability to process high-dimensional data and its computational 

efficiency [14]. DT is commonly applied because it is easy to interpret, trains rapidly, and can manage both 

numerical and categorical variables [15]. The benefits of k-NN approaches are straightforward to 
comprehend and execute [16]. Hyperparameter adjustment is an important component in training supervised 

and unsupervised ML models. Therefore, ML methods must be configured before training to get maximum 

results. This is because configuration variables affect model performance and accuracy [17]. Bayesian 

optimization (BO) is selected for hyperparameter tuning owing to its consistent advantage in reducing 

computational time relative to both Grid and random search methods [18]. 

Several studies evaluated the feature fusion of multiple pre-trained CNNs before applying classical 

ML classifiers. Alzahem [19] used Dempster-Shafer fusion on multiple CNNs but relied on ensemble theory 

rather than classical ML. Zhang et al. [20] combined CNN features but focused only on optimized CNNs 

without exploring the fusion of classical classifiers with Bayesian tuning. Overall, feature fusion combined 

with Bayesian-optimized classical machine learning classifiers remains unexplored. The main contributions 

of this research are summarized as follows: 

− Multi-CNN feature fusion: features are extracted from three pre-trained CNN architectures-VGG16, 

DenseNet201, and InceptionV3-and combined using a feature fusion technique to enhance feature 

richness and diversity. 

− Dimensionality reduction using PCA: PCA is applied to the fused features to reduce dimensionality, 

thereby improving computational efficiency and minimizing overfitting. 

− Classification with optimized machine learning models: the dimensionality-reduced features are 

categorized into four types of lung diseases using optimized versions of SVM, DT, and k-NN 

algorithms, where the optimal hyperparameters are determined through BO. 

− Clinically applicable classification pipeline: the proposed approach aims to develop a highly accurate 

and efficient classification system that can be integrated into clinical decision support systems for 

radiological diagnosis. 
 

 

2. METHOD 

This research uses a hybrid methodology integrating DL and machine learning to analyze lung 

image data. The stages of this research can be seen in Figure 1. It starts with image input, which is then 

reduced and normalized. Next, feature extraction is performed using three CNN models, namely VGG16, 

DenseNet201, and InceptionV3. 
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Figure 1. Research method 

 

 

The resulting features are fused using one of the fusion rules, namely concatenate. The results of the 

feature fusion will be reduced in dimension using PCA. The data is then divided into training data and test 

data for classification using SVM, DT, and k-NN, with BO. In the evaluation phase of this study, 

performance indicators including accuracy, precision, recall, and F1-score are utilized to assess the impact of 

the implemented hybrid approach. 
 

2.1.  Dataset 

Chest X-ray is a medical image that results from the process of radiography, which is an imaging 

technique that uses X-rays to visualize the internal structures of the chest. All images have been pre-

processed and scaled to 224 × 224 pixels. The dataset was created by merging multiple datasets from the 

Kaggle platform, an open online repository for datasets. The datasets showed minimal imbalance but 

contained duplicate images, so dataset cleaning was performed. Table 1 presents the dataset both prior to and 

following the data cleaning procedure, while Figure 2 shows a sample chest X-ray image of the lungs. 

Subsequently, the dataset is randomly split into 85% for training and 15% for testing, ensuring that class 

distribution remains balanced. Training data serves to build the model, while test data is utilized to measure 

how well the model performs on unseen inputs.  
 

 

Table 1. Number of images per class after data cleaning process 
Classes Normal COVID-19 Pneumonia Tuberculosis Total 

Before cleaning 1,802 1,626 1,800 1,600 6,828 

After cleaning 1,671 1,537 1,791 1,600 6,599 

 

 

 
 

Figure 2. Chest X-ray of the lungs 
 

 

2.2.  Deep feature extraction 

According to Heaton [21], CNN is a specific architecture in DL intended to process data organized 

in a grid format, such as picture data, represented as a 2D grid of pixels grouped in rows and columns. A 

CNN has layers of neurons that facilitate pattern recognition and feature extraction from pictures [22]. One of 
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the main features of CNN is the convolution layer, this layer extracts characteristic visual information 

hierarchically from the input image. This procedure entails an input matrix that serves as a numerical 

depiction of the image alongside a filter, a diminutive matrix of a particular dimension. The filter functions as 

a feature detector, traversing the input matrix and executing an element-wise multiplication with the relevant 

segment of the input, with the products then summed to yield a single output value. The output values 

subsequently create a feature map that illustrates the characteristics identified by the filter. Stride is the step 

determining the magnitude of the filter shift; if the stride size is 1, the filter will advance by one pixel with 

each iteration. The convolution process may be mathematically expressed as (1), where 𝑌(𝑖,𝑗) is the output 

value at position (𝑖, 𝑗), 𝐴 is the input matrix, 𝐾 is the convolution filter of size 𝑘 × 𝑘, and 𝑠 is the stride value. 
 

𝑌(𝑖,𝑗) = ∑ ∑ 𝐴(𝑖−1)𝑠+𝑚,(𝑗−1)𝑠+𝑛 × 𝐾(𝑚,𝑛)
𝑘
𝑛=1

𝑘
𝑚=1   (1) 

 

Input images are processed by the pretrained model via a series of convolutional and pooling layers 

designed to extract hierarchical features. Each convolutional block augments the filter count, enabling the 

model to discern progressively intricate patterns. At the same time, the pooling layer reduces the 
dimensionality of the image. Max Pooling [23] selects the maximum activation value to represent the whole 

region, preserving essential information. This technique effectively generates a sparser representation by 

selecting only the highest activation value from each pooled region. This study employs three pre-trained 

CNN models: VGG16, InceptionV3, and DenseNet201, with an input picture size of 224 × 224. Figure 3 

presents the structural design of each respective model.  
 

 

 
 

Figure 3. CNN model architecture 
 

 

As shown in Figure 3, each model used integrates global average pooling as an additional layer after 

the main model. Global average pooling reduces data dimensions while retaining important information by 

utilizing the invariance of feature map averages, thereby reducing overfitting and improving computational 

efficiency. The VGG16 model has a stable and deep architecture with a straightforward sequential structure, 

making it suitable for extracting robust spatial features. 
It produces 512-dimensional feature outputs. DenseNet201, designed to optimize information and 

gradient flow through dense connections between layers, generates richer feature representations with up to 
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1,920 output channels. Meanwhile, InceptionV3 incorporates multiple convolutional filter sizes within the 

same module, allowing it to capture multi-scale features effectively. This model produces final features with 

a dimension of 2,048 [24]–[26]. 

 

2.3.  Feature fusion and dimensionality reduction 

One feature type is frequently insufficient to accommodate an extensive range of data in 
classification issues. In order to provide a more reliable and accurate representation of the data, techniques 

that integrate characteristics from several extractors are thus required [27]. In order to integrate all of the 

features into a one-dimensional (1D) vector form, flattening is necessary because each model generates 

feature representations in a three-dimensional tensor format. 

This guarantees that characteristics from several models may be consistently blended. The feature 

representations for each sample are flattened by transforming them from high dimensions ℎ, 𝑤, 𝑐 into 1D 

vectors with a single dimension of ℎ ⋅  𝑤 ⋅  𝑐. This procedure may be stated mathematically as (2). Besides in 

(2) and (3), 𝑖 represents the model where 𝑛, ℎ, 𝑤 and 𝑐 are the number of samples, feature height, width, and 

channels. After averaging, the features of the three models are fused using the concatenation method, 

resulting in a feature fusion matrix (𝐹𝐹) of dimension (𝑛, 𝑑𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3 + 𝑑𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡201 + 𝑑𝑉𝐺𝐺16). 

 

𝐹𝑓𝑙𝑎𝑡,𝑖 ∈ ℝ𝑛×𝑑𝑖  (2) 

 

Were, 

 

𝑑𝑖 = ℎ ∙ 𝑤 ∙ 𝑐  (3) 

 
Besides being widely used in modern network architectures for feature fusion, concatenation 

methods are used for their simplicity and ability to retain information from multiple feature sources without 

losing important details [28]. Unlike averaging or maximizing, which can reduce dimensionality or ignore 

variations between features, concatenation preserves the richness of the feature representation obtained from 

each model or layer. This fusion corresponds to the feature concatenation method expressed in (4). 

 

𝐹𝐹 = [𝐹𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑉3, 𝐹𝑉𝐺𝐺16, 𝐹𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡201] (4) 

 

However, the concatenation method increases the final feature vector's dimension, increasing 

computational complexity. Therefore, PCA is applied to the fused matrix (FF) to reduce the dimensionality 

of large and complex features while retaining the most important information, simplifying the representation 

of high-dimensional data. In general, PCA works by calculating the eigenvalues of the data covariance matrix 

𝐶 to determine the main direction of data dispersion through a decomposition process, as shown in (5). 

 

𝐶𝒗 = 𝜆𝒗 (5) 

 

Pairs of eigen value 𝜆𝑖 and eigenvector 𝑣𝑖 are obtained, which compose the principal components. 

These components are then sorted by the value of 𝜆𝑖 in descending order. This study chooses the minimum 

number of principal components 𝑘 that satisfy (6). 

 
∑ 𝜆𝑖

𝑘
𝑖=1

∑ 𝜆𝑗
𝑗
𝑗=1

≥ 0.95  (6) 

 

Where 𝜆𝑖 is the 𝑖-th eigenvalue representing the variance explained by the 𝑖-th principal component, 

and 𝜆𝑗 is the 𝑗-th eigenvalue of all 𝑑 initial features, cumulatively representing the total variance of the 

original data. The 95% cumulative explained variance threshold is chosen to ensure that the reduced feature 

space retains most of the original information while significantly reducing dimensionality. By preserving at 

least 95% of the total variance, the transformed features remain highly representative of the original data 
structure, making them suitable for subsequent classification tasks. 

 

2.4.  Bayesian optimization for hyperparameter tuning in classification models 

Classification was performed using three machine learning algorithms, SVM, DT, and k-NN, to 

explore different approaches and see the most effective model. BO was applied as a hyperparameter tuning 

method to improve classification performance. Hyperparameters [29] refer to settings that determine how a 

machine-learning model is trained. Hyperparameters are not learned from the data but are set before training 

and can significantly affect model performance. The basis of BO comes from Bayes' theorem in (7), i.e. when 
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evaluating evidence data 𝐷, the posterior probability 𝑃(𝐻|𝐷) of model 𝐻 is equal to the probability 𝑃(𝐷|𝐻) 

of evaluating evidence data 𝐷 with model 𝐻 multiplied by the prior probability 𝑃(𝐻). 

 

𝑃(𝐻|𝐷) ∝ 𝑃(𝐷|𝐻)𝑃(𝐻)  (7) 

 

The main objective of BO is to find the hyperparameter value 𝑥∗ that maximizes the objective 

function 𝑓(𝑥), as shown in (8). 

 

𝑥∗ = arg max
𝑥∈𝐴

𝑓(𝑥)  (8) 

 

In (8), 𝑥 represents the combination of hyperparameters to be optimized. Meanwhile, 𝑓(𝑥) 

represents the objective function as the average accuracy score obtained from the training and evaluation 

process using k-fold cross-validation with a value of 𝑘 =  5. BO in this study consists of two important 

elements. First, the Bayesian Gaussian processing (GP) statistical model is a probabilistic representation of 

the objective function. GP is a collection of random variables; each subset of random variables will follow a 

multivariate Gaussian distribution [30]. In (9) describes a Gaussian process through two core components: 

the mean function 𝑚(𝑥) and the covariance function 𝑘(𝑥, 𝑥′).  

 

𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′ ))  (9) 

 

The second element is the expected improvement (EI) acquisition function, which determines the 

next search point in hyperparameter space. EI is a method used to evaluate how much potential improvement 

there is at a point in optimization [31]. The main idea is to evaluate how much potential improvement in the 

objective function value can be compared to the current best value (𝑓∗). 

In its implementation, each machine learning algorithm's BO begins with a random selection of 

hyperparameter combinations as the starting point of exploration. Next, BO performs an optimization process 

for 100 iterations to explore the search space described in Table 2 and identify the hyperparameter 

combination that produces the best performance. The initial combination and the final result of the 
optimization process are comprehensively presented in Table 3. These optimized hyperparameters are 

utilized in both the training and testing processes to enhance classification model performance. 

 

 

Table 2. Search space 
ML alg. Hyperparameter Search space Prior distribution 

SVM Box constraints (C) [1e-5, 1e+1] Log-uniform 

 Kernel type ['linear', 'poly', 'rbf', 'sigmoid'] Categorical 

 Kernel scale [1e-3, 1e+1] Log-uniform 

 Polynomial degree [2, 5] Uniform (discrete) 

 Kernel coefficient [0, 1] Uniform 

DT Maximum tree depth [1, 50] Log-uniform 

 Minimum split size {2, 7, 12, ..., 197} Categorical 

 Minimum leaf size [1, 100] Uniform 

 Minimum leaf weight [1e-2, 5e-1] Log-uniform 

 Splitting criterion {‘gini’, ‘entropy’} Categorical 

K-NN Number of neighbors [1, 20] Uniform 

 Weights {‘uniform’, ‘distance’} Categorical 

 Search algorithm {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’} Categorical 

 

 

Table 3. Hyperparameter settings for machine learning models 
ML alg. Hyperparameter VGG-16 DenseNet201 InceptionV3 Feature fusion 

SVM Box constraints (C) 4.97883 10 4.42014 10 

 Kernel type Linear RBF RBF Poly 

 Kernel scale - 0.001 0.001 0.001 

 Polynomial degree - - - 2 

 Kernel coefficient - - - 1 

DT Maximum tree depth 50 50 37 23 

 Minimum split size 7 7 2 87 

 Minimum leaf size 1 1 1 26 

 Minimum leaf weight 0.01 0.01 0.01104 0.01 

 Splitting criterion Entropy Entropy Gini Entropy 

K-NN Number of neighbors 7 8 3 3 

 Weights Distance Distance Distance Distance 

 Search algorithm Ball Tree Kd Tree Kd Tree Ball Tree 
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3. RESULTS AND DISCUSSION 

3.1.  Feature enhancement result 

Three different CNN-based models were employed to extract features from the processed lung 

images. The resulting outputs from each model were fused using concatenation to increase the robustness and 

diversity of the feature representation. Feature fusion yields high-dimensional data, which may lead to  

issues such as computational complexity. To mitigate these challenges, PCA is employed to project the 
features into a new subspace with reduced dimensions. The outcomes of this series of methodologies are 

displayed in Table 4. 
 

 

Table 4. Feature extraction and dimensionality reduction results 
Feature VGG16 DenseNet201 InceptionV3 FF FF-PCA 

Feature dimension  512 1,920 2,048 4,480 1,217 

Method Global average 

pooling 

Global average 

pooling 

Global average 

pooling 

Concatenation Principal component 

analysis 

 
 

The table indicates that each CNN model generates a distinct quantity of features. VGG16 generates 

512 features, DenseNet201 generates 1,920 features, and InceptionV3 generates 2,048 features. InceptionV3 

produces the most features, signifying that the model extracts more comprehensive information than VGG16 

and DenseNet201. Following the concatenation of features, the dimensionality increased to 4,480. PCA 
substantially lowered the feature dimension from 4,480 to 1,217 features.  

 

3.2.  Evaluation of classification 

Classification tasks were carried out using three machine learning methods, namely SVM, Decision 

DT, and k-NN, with the specific hyperparameters outlined in Table 3. The performance of each model was 

assessed using evaluation metrics such as accuracy, precision, recall, and F1 score, as represented in  

(10)-(13). The results derived from the evaluation are summarized in Table 5. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (11) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (12) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (13) 

 

The model evaluation uses standard metrics such as true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) for performance assessment. Based on Table 5, the hybrid approach 

based on feature fusion (FF) with the combination of FF-SVM shows the best classification performance 

compared to single models such as VGG16, DenseNet201, and InceptionV3. FF-SVM recorded the highest 

accuracy of 98.79%, along with precision, recall, and F1-score, all above 98%. These results reflect the 
stability of the model in classifying multiclass medical images. Compared to baselines such as DenseNet201-

SVM (97.47%) and VGG16-SVM (97.07%), feature fusion from multiple CNNs provides richer information. 
 

 

Table 5. Evaluation result 
Model ML algoritms Accuracy (%) Precision (%) Recall (%) F1-Score (%) Time taken (s) 

VGG16 SVM 97.07 97.16 97.17 97.16 244.6789 
 DT 83.33 83.81 83.44 83.53 310.1874 
 K-NN 95.86 95.91 96.00 95.94 202.0312 

DenseNet201 SVM 97.47 97.55 97.46 97.49 648.1935 
 DT 88.59 88.73 88.73 88.69 520.6981 
 K-NN 96.46 96.59 96.48 96.51 727.9218 

InceptionV3 SVM 95.45 95.54 95.53 95.53 1008.9276 
 DT 79.80 79.88 79.83 79.81 678.3621 

 K-NN 91.52 91.62 91.66 91.62 715.0327 
FF SVM 98.79 98.85 98.82 98.84 638.0538 

DT 88.79 88.85 88.88 88.84 508.6961 
 K-NN 97.27 97.40 97.29 97.34 401.2894 
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Feature fusion also improves the performance of other algorithms. The accuracy of k-NN increased 

from 95.86% to 97.27%, and DT slightly increased from 88.59% to 88.79%. However, DT still showed the 

lowest performance among the three algorithms, indicating its limitations in recognizing complex visual 

patterns. Feature fusion resulting in high-dimensional feature vectors shows that the application of PCA 

significantly improves computational efficiency without degrading model accuracy. This effectiveness is 

reflected in the relatively efficient training time of the FF-SVM model, which is about 638 seconds. This 

duration is comparable to a single model such as DenseNet201-SVM, which takes 648 seconds of training 
time and is significantly faster than InceptionV3-SVM, which takes up to 1,008 seconds. 

Pipeline efficiency is also improved by applying BO in the hyperparameter adjustment process. This 

approach offers advantages over conventional trial-and-error methods, as it is able to identify the optimal 

combination of parameters with fewer iterations automatically. As a result, the model training process 

becomes faster, and the computational burden can be reduced significantly. This is crucial, especially in 

system implementation in clinical environments that demand high efficiency and reliability. 

According to the outcomes of the error analysis, the confusion matrix reveals that most instances 

were classified correctly, reflecting strong overall model performance. However, some misclassification 

cases remain, especially in classes with high visual similarity. In the proposed FF-SVM model, for example, 

there are 5 cases of tuberculosis, 4 cases of pneumonia classified as COVID-19, and one normal case 

classified as pneumonia. This finding reflects the challenges in distinguishing diseases that have overlapping 

radiological characteristics. Figure 4 presents a visual representation of the misclassification pattern through 
the confusion matrix for each model, which provides a comprehensive overview of the distribution of 

predictions between classes. 

 

 

 
 

Figure 4. Confusion matrices for different classifiers and architectures 

 

 

From the receiver operating characteristic (ROC) curves in Figure 5, FF-SVM recorded AUC =1.00 

for all classes, indicating a very high classification ability. DT and k-NN were slightly lower, with average 

AUCs of 0.98 and 0.99, respectively. These results confirm the superiority of SVM, especially in 

distinguishing classes such as TB, as indicated by its perfect AUC of 1.00 across all classes. 

The proposed method's superiority is also apparent compared to previous studies in Table 6. 

Previous approaches, such as VGGNet and ABO-CNN, only achieved 95.11% and 96.95% accuracy. Even 
modern ensemble approaches such as VGG-19 + Vision Transformer only yielded 94.52% accuracy. With an 

accuracy of 98.79%, the FF-SVM method surpasses these results and offers better time efficiency and 

performance stability. These results highlight the proposed approach's substantial contributions and relevance 

for chest X-ray image-based lung disease detection systems. 
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(a) 

 

(b) 

 

 
(c) 

 

Figure 5. ROC curve of FF models (a) Support vector machine, (b) Decision tree,  

and (c) K-nearest neighbors 
 
 

Table 6. Comparison with previous studi 
Previous study Methods Dataset Accuracy (%) 

[32] VGGnet Chest X-Ray 95.11 

[33] Model Ensemble (VGG-19, ResNet50, vision transformer) Chest X-Ray 92.46 

94.52 

[34] ABO-CNN Chest X-Ray 96.95 

 

 

4. CONCLUSION 

This study shows that fusing features from several CNN-based architectures contributes to improved 
classification accuracy in CXR image analysis using machine learning models. The developed FF-SVM 

model achieved the highest accuracy of 98.79% in classifying four lung disease categories: Normal, COVID-

19, Pneumonia, and Tuberculosis. These results indicate the great potential of this approach to be applied in 

medical diagnosis support systems, especially in applications that are easily accessible in areas with limited 

health facilities. However, this study has some limitations. The model was trained using only CXR images 

without considering other medical data such as CT scans, MRIs, or additional clinical data. In addition, 

potential biases in the dataset and reliance on image quality may limit the model's generalization to a broader 

population. Testing has not been conducted on external datasets nor in the context of real use in a clinical 

environment. As a development direction, exploring multimodal data fusion strategies and validation in real-

world scenarios could be an important step to improve reliability and broader applicability. The methodology 

also supports the use of artificial intelligence (AI) systems in healthcare, which can be extended to other 

medical imaging modalities and different disease categories. 
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