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Information technology advancements have created big data, necessitating
efficient techniques to retrieve helpful information. With its capacity to
recognize and categorize patterns in data, especially the growing amount of
picture data, deep learning is becoming a viable option. This research aims
to develop a medical image classification model using chest X-Ray with four
classes, namely Covid-19, Pneumonia, Tuberculosis, and Normal. The
proposed method combines the advantages of deep learning and machine
learning. Three pre-trained CNN models, VGG16, DenseNet201, and
InceptionV3, extract features from images. The features generated from each
model are fused to enhance the relevant information. Furthermore, principal
component analysis (PCA) was applied to reduce the dimensionality of the
features, and Bayesian optimization was used to optimize the
hyperparameters of the machine learning algorithms support vector machine
(SVM), decision tree (DT), and k-nearest neighbors (k-NN). The resulting

classification model was evaluated based on accuracy, precision, recall, and
F1-score. The results showed that FF-SVM, which is the proposed model,
achieved an accuracy of 98.79% with precision, recall, and F1-score of
98.85%, 98.82%, and 98.84%, respectively. In conclusion, fusing feature
extraction from multiple CNN models improved the classification accuracy
of each machine-learning model. It provided reliable and accurate
predictions for lung image diagnosis using chest X-Ray.
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1. INTRODUCTION

Pulmonary diseases such as COVID-19, pneumonia, and tuberculosis are global health problems
that significantly impact morbidity and mortality rates [1]. Reducing the spread and improving patient
prognosis requires an early and precise diagnosis. However, there are drawbacks to manually interpreting
chest medical imaging, such as CT scans and radiographs, including the need for radiologists' knowledge, the
possibility of human mistakes, and a lack of resources in places with low healthcare access [2].

Since the mid-20th century, the world has undergone profound changes thanks to rapid advances in
information technology, particularly computer technology. Big Data, the result of these developments in the
information age, is now an important force driving the transformation of various sectors, including
healthcare. As the number and complexity of medical images increase in the Big Data era, conventional
approaches to data processing become inadequate to meet the need for accurate and efficient analysis [3].
Recent developments, especially in deep learning (DL), have enabled the identifying, measuring, and
classifying of patterns in image data [4]. DL is an algorithm inspired by how the human brain works, where
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artificial neural networks function like the network of neurons in our brain to process information and learn

from experience [5], [6]. One of the most popular DL architectures in image data processing is convolutional

neural networks (CNN). CNN is specifically designed to extract features representing various contexts of
image data without feature engineering through convolution layers [7]. Several advanced CNN architectures

were developed and applied in image data classification and pattern recognition [8].

Previous research by Gupta and Chawla [9] evaluated the efficiency of several pre-trained CNN
models, including VGG16, VGG19, Xception, and ResNet50, along with support vector machine (SVM)
and logistic regression (LR) for breast cancer classification using histopathology images. The results
showed that ResNet50+LR achieved the best accuracy (93.27%), outperforming the other models.
Research by Aslan et al. [10] developed a classification method for COVID-19 diagnosis using chest
computed tomography (CT) images. They utilized several advanced CNN architectures (AlexNet,
ResNet18, ResNet50, Inceptionv3, Densenet201, Inceptionresnetv2, MobileNetv2, GoogleNet) that had
been pre-trained to extract features and classify them using several machine learning algorithms, where the
DenseNet-SVM architecture gave the highest accuracy of 96.29%. Research by Biswas and Islam [11]
classifies brain tumors through a hybrid model based on deep CNN (DCNN) and SVM. CNN+SVM
obtained 96.0% accuracy, 98.0% specificity, and 95.71% sensitivity, higher than other transfer learning
models (AlexNet, GoogLeNet, and VGG16).

Previous research has focused on utilizing individual CNN architectures for feature extraction,
which are then combined with classical machine learning algorithms for classification. Therefore, this study
proposes a feature fusion approach by fusing features from several pre-trained CNN architectures, namely
VGG16, DenseNet201, and InceptionV3. This approach aims to utilize the advantages of each architecture in
extracting different visual representations from medical images, resulting in more informative and rich
features [12]. The principal component analysis (PCA) dimensionality reduction technique is then used to
reduce the dimensionality of the data and transform the features into a more compact subspace while
retaining important information [13].

Furthermore, classification is performed using several machine learning algorithms, namely SVM,
decision tree (DT), and K-nearest neighbors (k-NN), which are known for their respective advantages. SVM
offers significant advantages with its ability to process high-dimensional data and its computational
efficiency [14]. DT is commonly applied because it is easy to interpret, trains rapidly, and can manage both
numerical and categorical variables [15]. The benefits of k-NN approaches are straightforward to
comprehend and execute [16]. Hyperparameter adjustment is an important component in training supervised
and unsupervised ML models. Therefore, ML methods must be configured before training to get maximum
results. This is because configuration variables affect model performance and accuracy [17]. Bayesian
optimization (BO) is selected for hyperparameter tuning owing to its consistent advantage in reducing
computational time relative to both Grid and random search methods [18].

Several studies evaluated the feature fusion of multiple pre-trained CNNs before applying classical
ML classifiers. Alzahem [19] used Dempster-Shafer fusion on multiple CNNs but relied on ensemble theory
rather than classical ML. Zhang et al. [20] combined CNN features but focused only on optimized CNNs
without exploring the fusion of classical classifiers with Bayesian tuning. Overall, feature fusion combined
with Bayesian-optimized classical machine learning classifiers remains unexplored. The main contributions
of this research are summarized as follows:

—  Multi-CNN feature fusion: features are extracted from three pre-trained CNN architectures-VGG16,
DenseNet201, and InceptionV3-and combined using a feature fusion technique to enhance feature
richness and diversity.

—  Dimensionality reduction using PCA: PCA is applied to the fused features to reduce dimensionality,
thereby improving computational efficiency and minimizing overfitting.

—  Classification with optimized machine learning models: the dimensionality-reduced features are
categorized into four types of lung diseases using optimized versions of SVM, DT, and k-NN
algorithms, where the optimal hyperparameters are determined through BO.

—  Clinically applicable classification pipeline: the proposed approach aims to develop a highly accurate
and efficient classification system that can be integrated into clinical decision support systems for
radiological diagnosis.

2. METHOD

This research uses a hybrid methodology integrating DL and machine learning to analyze lung
image data. The stages of this research can be seen in Figure 1. It starts with image input, which is then
reduced and normalized. Next, feature extraction is performed using three CNN models, namely VGG16,
DenseNet201, and InceptionV3.
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Figure 1. Research method

The resulting features are fused using one of the fusion rules, namely concatenate. The results of the
feature fusion will be reduced in dimension using PCA. The data is then divided into training data and test
data for classification using SVM, DT, and k-NN, with BO. In the evaluation phase of this study,
performance indicators including accuracy, precision, recall, and F1-score are utilized to assess the impact of
the implemented hybrid approach.

2.1. Dataset

Chest X-ray is a medical image that results from the process of radiography, which is an imaging
technique that uses X-rays to visualize the internal structures of the chest. All images have been pre-
processed and scaled to 224 x 224 pixels. The dataset was created by merging multiple datasets from the
Kaggle platform, an open online repository for datasets. The datasets showed minimal imbalance but
contained duplicate images, so dataset cleaning was performed. Table 1 presents the dataset both prior to and
following the data cleaning procedure, while Figure 2 shows a sample chest X-ray image of the lungs.
Subsequently, the dataset is randomly split into 85% for training and 15% for testing, ensuring that class
distribution remains balanced. Training data serves to build the model, while test data is utilized to measure
how well the model performs on unseen inputs.

Table 1. Number of images per class after data cleaning process

Classes Normal COVID-19 Pneumonia  Tuberculosis  Total
Before cleaning 1,802 1,626 1,800 1,600 6,828
After cleaning 1,671 1,537 1,791 1,600 6,599
Normal Covid Ppeumonia Tuberculosis

Figure 2. Chest X-ray of the lungs

2.2. Deep feature extraction

According to Heaton [21], CNN is a specific architecture in DL intended to process data organized
in a grid format, such as picture data, represented as a 2D grid of pixels grouped in rows and columns. A
CNN has layers of neurons that facilitate pattern recognition and feature extraction from pictures [22]. One of
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the main features of CNN is the convolution layer, this layer extracts characteristic visual information
hierarchically from the input image. This procedure entails an input matrix that serves as a numerical
depiction of the image alongside a filter, a diminutive matrix of a particular dimension. The filter functions as
a feature detector, traversing the input matrix and executing an element-wise multiplication with the relevant
segment of the input, with the products then summed to yield a single output value. The output values
subsequently create a feature map that illustrates the characteristics identified by the filter. Stride is the step
determining the magnitude of the filter shift; if the stride size is 1, the filter will advance by one pixel with
each iteration. The convolution process may be mathematically expressed as (1), where Y{; ;) is the output

value at position (i, j), A4 is the input matrix, K is the convolution filter of size k X k, and s is the stride value.
Yo j) = PILAD Y. Ai—D)sem,(j-Ds+n X Kann) 1)

Input images are processed by the pretrained model via a series of convolutional and pooling layers
designed to extract hierarchical features. Each convolutional block augments the filter count, enabling the
model to discern progressively intricate patterns. At the same time, the pooling layer reduces the
dimensionality of the image. Max Pooling [23] selects the maximum activation value to represent the whole
region, preserving essential information. This technique effectively generates a sparser representation by
selecting only the highest activation value from each pooled region. This study employs three pre-trained
CNN models: VGG16, InceptionV3, and DenseNet201, with an input picture size of 224 x 224. Figure 3
presents the structural design of each respective model.
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Figure 3. CNN model architecture

As shown in Figure 3, each model used integrates global average pooling as an additional layer after
the main model. Global average pooling reduces data dimensions while retaining important information by
utilizing the invariance of feature map averages, thereby reducing overfitting and improving computational
efficiency. The VGG16 model has a stable and deep architecture with a straightforward sequential structure,
making it suitable for extracting robust spatial features.

It produces 512-dimensional feature outputs. DenseNet201, designed to optimize information and
gradient flow through dense connections between layers, generates richer feature representations with up to

Comput Sci Inf Technol, Vol. 6, No. 3, November 2025: 315-325



Comput Sci Inf Technol ISSN: 2722-3221 a 319

1,920 output channels. Meanwhile, InceptionV3 incorporates multiple convolutional filter sizes within the
same module, allowing it to capture multi-scale features effectively. This model produces final features with
a dimension of 2,048 [24]-[26].

2.3. Feature fusion and dimensionality reduction

One feature type is frequently insufficient to accommodate an extensive range of data in
classification issues. In order to provide a more reliable and accurate representation of the data, techniques
that integrate characteristics from several extractors are thus required [27]. In order to integrate all of the
features into a one-dimensional (1D) vector form, flattening is necessary because each model generates
feature representations in a three-dimensional tensor format.

This guarantees that characteristics from several models may be consistently blended. The feature
representations for each sample are flattened by transforming them from high dimensions h,w, ¢ into 1D
vectors with a single dimension of h - w - ¢. This procedure may be stated mathematically as (2). Besides in
(2) and (3), i represents the model where n, h, w and c are the number of samples, feature height, width, and
channels. After averaging, the features of the three models are fused using the concatenation method,
resulting in a feature fusion matrix (FF) of dimension (n, dinceptionvs + Apensenetzo1 + Aveeie)-

Friqe; € R 2
Were,
di=h-w-c ?3)

Besides being widely used in modern network architectures for feature fusion, concatenation
methods are used for their simplicity and ability to retain information from multiple feature sources without
losing important details [28]. Unlike averaging or maximizing, which can reduce dimensionality or ignore
variations between features, concatenation preserves the richness of the feature representation obtained from
each model or layer. This fusion corresponds to the feature concatenation method expressed in (4).

FF = [FlnceptionV3: FVGGlé: FDenseNetZOl] (4)

However, the concatenation method increases the final feature vector's dimension, increasing
computational complexity. Therefore, PCA is applied to the fused matrix (FF) to reduce the dimensionality
of large and complex features while retaining the most important information, simplifying the representation
of high-dimensional data. In general, PCA works by calculating the eigenvalues of the data covariance matrix
C to determine the main direction of data dispersion through a decomposition process, as shown in (5).

Cv =W (%)

Pairs of eigen value A; and eigenvector v; are obtained, which compose the principal components.
These components are then sorted by the value of 4; in descending order. This study chooses the minimum
number of principal components k that satisfy (6).

A
=12 > 0.95 (6)

j=1)“]'

Where 2; is the i-th eigenvalue representing the variance explained by the i-th principal component,
and 4; is the j-th eigenvalue of all d initial features, cumulatively representing the total variance of the
original data. The 95% cumulative explained variance threshold is chosen to ensure that the reduced feature
space retains most of the original information while significantly reducing dimensionality. By preserving at
least 95% of the total variance, the transformed features remain highly representative of the original data
structure, making them suitable for subsequent classification tasks.

2.4. Bayesian optimization for hyperparameter tuning in classification models

Classification was performed using three machine learning algorithms, SVM, DT, and k-NN, to
explore different approaches and see the most effective model. BO was applied as a hyperparameter tuning
method to improve classification performance. Hyperparameters [29] refer to settings that determine how a
machine-learning model is trained. Hyperparameters are not learned from the data but are set before training
and can significantly affect model performance. The basis of BO comes from Bayes' theorem in (7), i.e. when
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evaluating evidence data D, the posterior probability P(H|D) of model H is equal to the probability P(D|H)
of evaluating evidence data D with model H multiplied by the prior probability P(H).

P(H|D) e« P(DIH)P(H) Y]

The main objective of BO is to find the hyperparameter value x* that maximizes the objective
function f(x), as shown in (8).

x" = argmax f(x) (8)

In (8), x represents the combination of hyperparameters to be optimized. Meanwhile, f(x)
represents the objective function as the average accuracy score obtained from the training and evaluation
process using k-fold cross-validation with a value of k = 5. BO in this study consists of two important
elements. First, the Bayesian Gaussian processing (GP) statistical model is a probabilistic representation of
the objective function. GP is a collection of random variables; each subset of random variables will follow a
multivariate Gaussian distribution [30]. In (9) describes a Gaussian process through two core components:
the mean function m(x) and the covariance function k(x, x").

f)~GP(m(x), k(x,x")) )

The second element is the expected improvement (EI) acquisition function, which determines the
next search point in hyperparameter space. El is a method used to evaluate how much potential improvement
there is at a point in optimization [31]. The main idea is to evaluate how much potential improvement in the
objective function value can be compared to the current best value ().

In its implementation, each machine learning algorithm's BO begins with a random selection of
hyperparameter combinations as the starting point of exploration. Next, BO performs an optimization process
for 100 iterations to explore the search space described in Table 2 and identify the hyperparameter
combination that produces the best performance. The initial combination and the final result of the
optimization process are comprehensively presented in Table 3. These optimized hyperparameters are
utilized in both the training and testing processes to enhance classification model performance.

Table 2. Search space

ML alg. Hyperparameter Search space Prior distribution
SVM Box constraints (C) [1e-5, le+1] Log-uniform
Kernel type ['linear’, 'poly’, 'rbf', 'sigmoid’] Categorical
Kernel scale [1e-3, le+1] Log-uniform
Polynomial degree [2, 5] Uniform (discrete)
Kernel coefficient [0, 1] Uniform
DT Maximum tree depth [1,50] Log-uniform
Minimum split size {2,7,12, ..., 197} Categorical
Minimum leaf size [1,100] Uniform
Minimum leaf weight  [1e-2, 5e-1] Log-uniform
Splitting criterion {‘gini’, ‘entropy’} Categorical
K-NN Number of neighbors  [1, 20] Uniform
Weights {‘uniform’, ‘distance’} Categorical
Search algorithm {‘auto’, ‘ball tree’, ‘kd tree’, ‘brute’}  Categorical

Table 3. Hyperparameter settings for machine learning models

ML alg. Hyperparameter VGG-16  DenseNet201  InceptionV3  Feature fusion
SVM Box constraints (C) 4.97883 10 4.42014 10
Kernel type Linear RBF RBF Poly
Kernel scale - 0.001 0.001 0.001
Polynomial degree - - 2
Kernel coefficient - - - 1
DT Maximum tree depth 50 50 37 23
Minimum split size 7 7 2 87
Minimum leaf size 1 1 1 26
Minimum leaf weight 0.01 0.01 0.01104 0.01
Splitting criterion Entropy Entropy Gini Entropy
K-NN Number of neighbors 7 8 3 3
Weights Distance Distance Distance Distance
Search algorithm Ball Tree Kd Tree Kd Tree Ball Tree
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3. RESULTS AND DISCUSSION
3.1. Feature enhancement result

Three different CNN-based models were employed to extract features from the processed lung
images. The resulting outputs from each model were fused using concatenation to increase the robustness and
diversity of the feature representation. Feature fusion yields high-dimensional data, which may lead to
issues such as computational complexity. To mitigate these challenges, PCA is employed to project the
features into a new subspace with reduced dimensions. The outcomes of this series of methodologies are
displayed in Table 4.

Table 4. Feature extraction and dimensionality reduction results

Feature VGG16 DenseNet201 InceptionV3 FF FF-PCA
Feature dimension 512 1,920 2,048 4,480 1,217
Method Global average Global average Global average  Concatenation  Principal component
pooling pooling pooling analysis

The table indicates that each CNN model generates a distinct quantity of features. VGG16 generates
512 features, DenseNet201 generates 1,920 features, and InceptionV3 generates 2,048 features. InceptionV3
produces the most features, signifying that the model extracts more comprehensive information than VGG16
and DenseNet201. Following the concatenation of features, the dimensionality increased to 4,480. PCA
substantially lowered the feature dimension from 4,480 to 1,217 features.

3.2. Evaluation of classification

Classification tasks were carried out using three machine learning methods, namely SVM, Decision
DT, and k-NN, with the specific hyperparameters outlined in Table 3. The performance of each model was
assessed using evaluation metrics such as accuracy, precision, recall, and F1 score, as represented in
(10)-(13). The results derived from the evaluation are summarized in Table 5.

Accuracy = S — (10)
TP+TN+FP+FN
Precision = —— (11)
TP+FP
Recall = —= (12)
TP+FN

2XRecallxPrecision
F1—Score = —— (13)

Recall+Precision
The model evaluation uses standard metrics such as true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) for performance assessment. Based on Table 5, the hybrid approach
based on feature fusion (FF) with the combination of FF-SVM shows the best classification performance
compared to single models such as VGG16, DenseNet201, and InceptionV3. FF-SVM recorded the highest
accuracy of 98.79%, along with precision, recall, and F1-score, all above 98%. These results reflect the

stability of the model in classifying multiclass medical images. Compared to baselines such as DenseNet201-
SVM (97.47%) and VGG16-SVM (97.07%), feature fusion from multiple CNNs provides richer information.

Table 5. Evaluation result

Model ML algoritms  Accuracy (%) Precision (%) Recall (%) F1-Score (%) Time taken (s)
VGG16 SVM 97.07 97.16 97.17 97.16 244.6789
DT 83.33 83.81 83.44 83.53 310.1874
K-NN 95.86 95.91 96.00 95.94 202.0312
DenseNet201 SVM 97.47 97.55 97.46 97.49 648.1935
DT 88.59 88.73 88.73 88.69 520.6981
K-NN 96.46 96.59 96.48 96.51 727.9218
InceptionV3 SVM 95.45 95.54 95.53 95.53 1008.9276
DT 79.80 79.88 79.83 79.81 678.3621
K-NN 91.52 91.62 91.66 91.62 715.0327
FF SVM 98.79 98.85 98.82 98.84 638.0538
DT 88.79 88.85 88.88 88.84 508.6961
K-NN 97.27 97.40 97.29 97.34 401.2894
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Feature fusion also improves the performance of other algorithms. The accuracy of k-NN increased
from 95.86% to 97.27%, and DT slightly increased from 88.59% to 88.79%. However, DT still showed the
lowest performance among the three algorithms, indicating its limitations in recognizing complex visual
patterns. Feature fusion resulting in high-dimensional feature vectors shows that the application of PCA
significantly improves computational efficiency without degrading model accuracy. This effectiveness is
reflected in the relatively efficient training time of the FF-SVM model, which is about 638 seconds. This
duration is comparable to a single model such as DenseNet201-SVM, which takes 648 seconds of training
time and is significantly faster than InceptionVV3-SVM, which takes up to 1,008 seconds.

Pipeline efficiency is also improved by applying BO in the hyperparameter adjustment process. This
approach offers advantages over conventional trial-and-error methods, as it is able to identify the optimal
combination of parameters with fewer iterations automatically. As a result, the model training process
becomes faster, and the computational burden can be reduced significantly. This is crucial, especially in
system implementation in clinical environments that demand high efficiency and reliability.

According to the outcomes of the error analysis, the confusion matrix reveals that most instances
were classified correctly, reflecting strong overall model performance. However, some misclassification
cases remain, especially in classes with high visual similarity. In the proposed FF-SVM model, for example,
there are 5 cases of tuberculosis, 4 cases of pneumonia classified as COVID-19, and one normal case
classified as pneumonia. This finding reflects the challenges in distinguishing diseases that have overlapping
radiological characteristics. Figure 4 presents a visual representation of the misclassification pattern through
the confusion matrix for each model, which provides a comprehensive overview of the distribution of
predictions between classes.

VGGI6 DenseNet201 InceptionV3 FF

2 4

SVM

Decission Tree

K-NN

Figure 4. Confusion matrices for different classifiers and architectures

From the receiver operating characteristic (ROC) curves in Figure 5, FF-SVM recorded AUC =1.00
for all classes, indicating a very high classification ability. DT and k-NN were slightly lower, with average
AUCs of 0.98 and 0.99, respectively. These results confirm the superiority of SVM, especially in
distinguishing classes such as TB, as indicated by its perfect AUC of 1.00 across all classes.

The proposed method's superiority is also apparent compared to previous studies in Table 6.
Previous approaches, such as VGGNet and ABO-CNN, only achieved 95.11% and 96.95% accuracy. Even
modern ensemble approaches such as VGG-19 + Vision Transformer only yielded 94.52% accuracy. With an
accuracy of 98.79%, the FF-SVM method surpasses these results and offers better time efficiency and
performance stability. These results highlight the proposed approach's substantial contributions and relevance
for chest X-ray image-based lung disease detection systems.
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Figure 5. ROC curve of FF models (a) Support vector machine, (b) Decision tree,
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Table 6. Comparison with previous studi

Previous study Methods Dataset Accuracy (%)
[32] VGGnet Chest X-Ray 95.11
[33] Model Ensemble (VGG-19, ResNet50, vision transformer)  Chest X-Ray 92.46
94.52
[34] ABO-CNN Chest X-Ray 96.95

4.  CONCLUSION

This study shows that fusing features from several CNN-based architectures contributes to improved
classification accuracy in CXR image analysis using machine learning models. The developed FF-SVM
model achieved the highest accuracy of 98.79% in classifying four lung disease categories: Normal, COVID-
19, Pneumonia, and Tuberculosis. These results indicate the great potential of this approach to be applied in
medical diagnosis support systems, especially in applications that are easily accessible in areas with limited
health facilities. However, this study has some limitations. The model was trained using only CXR images
without considering other medical data such as CT scans, MRIs, or additional clinical data. In addition,
potential biases in the dataset and reliance on image quality may limit the model's generalization to a broader
population. Testing has not been conducted on external datasets nor in the context of real use in a clinical
environment. As a development direction, exploring multimodal data fusion strategies and validation in real-
world scenarios could be an important step to improve reliability and broader applicability. The methodology
also supports the use of artificial intelligence (Al) systems in healthcare, which can be extended to other
medical imaging modalities and different disease categories.
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