
Computer Science and Information Technologies

Vol. 1, No. 3, November 2020, pp. 98~105

ISSN: 2722-3221, DOI: 10.11591/csit.v1i3.p98-105  98

Journal homepage: http://iaesprime.com/index.php/csit

Modification data attack inside computer systems: A critical

review

Vahid Kaviani J, Parvin Ahmadi Doval Amiri, Farsad Zamani Brujeni, Nima Akhlaghi
Department of Engineering, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran

Article Info ABSTRACT

Article history:

Received Jan 23, 2020

Revised May 28, 2020

Accepted Jun 16, 2020

 This paper is a review of types of modification data attack based on computer

systems and it explores the vulnerabilities and mitigations. Altering

information is a kind of cyber-attack during which intruders interfere, catch,

alter, take or erase critical data on the PCs and applications through using

network exploit or by running malicious executable codes on victim's system.

One of the most difficult and trendy areas in information security is to protect

the sensitive information and secure devices from any kind of threats. Latest

advancements in information technology in the field of information security

reveal huge amount of budget funded for and spent on developing and

addressing security threats to mitigate them. This helps in a variety of settings

such as military, business, science, and entertainment. Considering all

concerns, the security issues almost always come at first as the most critical

concerns in the modern time. As a matter of fact, there is no ultimate security

solution; although recent developments in security analysis are finding daily

vulnerabilities, there are many motivations to spend billions of dollars to

ensure there are vulnerabilities waiting for any kind of breach or exploit to

penetrate into the systems and networks and achieve particular interests. In

terms of modifying data and information, from old-fashioned attacks to recent

cyber ones, all of the attacks are using the same signature: either controlling

data streams to easily breach system protections or using non-control-data

attack approaches. Both methods can damage applications which work on

decision-making data, user input data, configuration data, or user identity data

to a large extent. In this review paper, we have tried to express trends of

vulnerabilities in the network protocols’ applications.

Keywords:

Computer security

Control data attack

Memory security

Modification

Non-control data attack

This is an open access article under the CC BY-SA license.

Corresponding Author:

Vahid Kaviani J,

Department of Engineering,

Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran.

Email: kaviani@khuisf.ac.ir

1. INTRODUCTION

By the rise in the number of computers and networks, and upon seeking more security and assurance

simultaneously, the area of security has become both more interesting and challenging. In fact, aggressors

attempt to access delicate basic resources to exploit them. As with numerous inspirations, there are a lot of

news broadcasts concerning abuse of data and attacks on systems all over the globe. Although a lot of

researches and studies have been launched to secure networks and successfully prevent a large number of

attacks, there are many varieties of attacks, most of which are still new and open to further studies. In this

survey paper, an attempt has been made to elaborate more on the methods and tools attackers use to modify

information and data.

https://creativecommons.org/licenses/by-sa/4.0/

Comput. Sci. Inf. Technol. 

Modification data attack inside computer systems: a critical review… (Vahid Kaviani J)

99

2. DEFINITION OF ATTACK

In terms of definition, an attacker is the person who can maliciously intercept, interrupt, sniff, alter,

steal, or remove important data inside a computer or application by breaching the network or through breaching

to the system directly, like running an executable code on the target computer. Data modification has different

types. Intruders misuse different resources of victims to reach their goals. Specifically, they exploit software

vulnerabilities or hardware weaknesses to penetrate the system [1]. In this survey, we have tried to show

the trends of modification data attack. In the following review, the manner in which these kinds of attacks will

take place and their countermeasures are explained.

2.1. Definition of problem (data modification attack)

Generally, most of the intruders know that there is a breach, or better to say, insecure application on

some PCs. They can misuse insecure software and systems to do the modification. This approach is called

control-based attack, in which an intruder misuses a memory flaw, such as a buffer overflow or use-after-free,

to overwrite control-data such as a return address or function pointer and thereby modifies the control-flow of

the program. In order to get the control of an application, which is referred to as hijacking [2], primarily it is

necessary to inject specific data which can be run to get the control of system. This method is known, in

the cyber world, as control-data attack. Another type of modification data attack results in the run of

computation which is known as non-control-data attack. This type of attack, which injects wrong data in system

call, needs to inject invalid code by corrupting the data or using a valid code with invalid data entry or through

entering an invalid path by corruption. In order to detect those attacks, anomaly-based analysis is used in IDS

to look for any flaw from a pattern which shows irregularity from normal behavior of the programs [3].

Most of the security systems launch this kind of detection in local systems and build their patterns

using sequences of system calls. This approach can detect various control-data attacks; however, most of the

non-control-data ones evade that procedure [4]. Modifications data is the way known by control-data-attackers

which alters the flow of programs. That means it modifies user characteristics, configuration, and user input

data to achieve attacker’s goals [5]. Stated that non-control data attacks are of a serious nature. They can be a

threat against many real applications. Moreover, server side applications widely include the infrastructure

needed for this type of attack. Since the recent countermeasures, which have been developed against control-

based attacks, have succeeded, the expansion rate of non-control data attacks has been increased

dramatically [6].

In recent years, a lot of experts and scientists have been addressed to find out the way to mitigate

control-based-attacks. One of the most significant researches in this scope, which is a part of governmental

afford to develop a formal model of for assessing integrity of control-flow, used this model to find the

correctness of defenses against an attacker [7]. Shuo Chen at al. indicated that those countermeasures which

address control-based-attacks will not prevent non-control-data attacks [5]. Those intruders who are using non-

control approach can evade the defense system. For example, those who use mimicry attacks can evade the

security mechanism and such kind of attack can potentially bypass security. Several improvements of this

approach have been offered, notably by adding information available at the system level, such as the parameters

of the system calls or their execution context. The detection of control-data attacks is enhanced in not only

accuracy but also completeness, however, non-control-data attacks remain mostly undetected [8].

Most of modifications in memory data flow attacks [9-10] which are emerged by penetrations and

worms, are known as the control-data attack. With recent advancement in security areas, exploiting network

and computer systems is becoming more tough; hence, it is essential for intruders to get enough information

form victims’ devices and applications, and they must be equipped with powerful tools and enough expertise

to run successful cyber-attacks against sensitive data and network infrastructure. Intruders mostly exploit the

computer systems by breaching the security vulnerabilities such as integer overflow, format string

vulnerability, and buffer overflow and low-level memory corruption flaws. These vulnerabilities are not the

only approach. There are other types of vulnerability such as malwares, zombie bots and rootkits which can

cause denial of service (DDoS) attack [11] or etc.

There is much more detail about these trends of attacks which is included in these papers [12-13] and

can broadly be found on the Internet. Another sort of modification attack, which causes breach by memory

corruption, uses a similar pattern that is known as control-data-attack. It alters the stream of instruction of a

program by means of changing registry counter while facing program error. This causes a change in the

addressing of flow program inside the processor. All these could happen through launching malicious program

which contains harmful codes. The attacks mostly occur in system calls or etc. A quick study of the US CERT

(Computer Emergency Response Team), shown in Figure 1, suggests security policies in [14, 15] and the

Microsoft assurance report in [16] shows that control-data attack is an important vulnerability and should be

classified as critical danger.

  ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 3, November 2020: 98 – 105

100

Figure 1. Number of ICS-CERT reported vulnerabilities by sector

3. RELATED WORKS

Cole Schlesinger et al. used special hardware architecture known as the Minos. It can prevent those

attacks that are caused by memory corruption and hijack in systems like control data attacks and some of non-

control data ones [17]. Moreover, in order to mitigate control data attacks, which can inject malicious codes to

change the processor counter, it protects memory from any kind of violation of safety. The Minos checks

the integrity of all data in memory. Another related work in [18] paper which is related to the prevention of

both non-control data and control data attacks is known as YARRA. YARRA is another extension of C++

compiler which protects important unsafe components, sensitive data type and other vulnerability in

interpretation between higher level languages to lower level. It is also proved that this project can successfully

assess and validate the results of implementations in real environment systems which were vulnerable to a

variety of memory corruption attacks.

4. CURRENT TRENDS IN NON-DATA & CONTROL DATA ATTACKERS

Recent achievements in mitigation of control-data attacks have offered many unsure approaches. It is

more logical to investigate the impact and domain of control-data attacks. Most of hackers, due to complicated

penetration processes and lack of knowledge, prefer to run non-control-data attacks against their victims.

Although skillful intruders have enough knowledge and experience to penetrate by control data attack

approaches, the enhancements in intrusion detection systems has pushed many attackers to focus and penetrate

taking advantage of non-control-data vulnerability [19]. If it is considered as fact, and if the breaches of control

flow become impossible to penetrate, intruders will be motivated to gain access of the victims’ systems.

Some research and studies have figured out that the countermeasures for memory corruptions are not

well addressed and it is still a problem at hand. The need for more research projects in this area seems

inevitable. Types of attacks using specific memory addressing vulnerabilities such as:

 Stack Guard [20]

 Library safe [21]

 Format Guard [22]

5. SOME SOPHISTICATED ATTACKS AND EXPLOITS

As a result of reviewing related papers in this area, it is concluded that in terms of duration and impact

of attacks, a large number of attacks misused the application vulnerabilities which allowed intruders to

overwrite randomly in memory and the address of a potential application. Some remarkable samples are known

as memory flaw injection, integer overflow, format string and stack overflow.

5.1. Low-level software

Most of the penetrations take place by outside intruders and most of the computer victims were

breached through controlling software behavior. Normally, this kind of attack can pass through common

network communications and inject malicious code into the memory by low-level language vulnerabilities.

Through abusing this weakness, these low-level breaches can threaten the execution of the program and hijack

Comput. Sci. Inf. Technol. 

Modification data attack inside computer systems: a critical review… (Vahid Kaviani J)

101

control over its behavior. Low level vulnerabilities in languages such as C++ and C must be addressed to tackle

these security issues. Whenever high level languages are interpreted to low-level ones, it could be a potential

risk for injection. The only benefit of unprotected interpretation is saving more memory and deliberations.

Software developers show their aim utilizing the reflections of more elevated languages. If these reflections

are not saved in low-level executions, then this error can lead the product to act in surprising ways. Frequently,

an aggressor will have the capacity to exploit this error, and redirect the low-level execution of the product to

perform arbitrary functionalities of the attacker’s choice [17].

5.2. Data properties

File settings are used extensively by many web applications. For instance, in order to manage and

configure several configurations of apache web server, it can be configured by the framework manager using

httpd.conf. Admin can manage and specify the address of data and executable files, security policies and access

control parameters. The same configuration and files are used in FTP, SSH [23], and other network server

applications. Most of server apps process configuration files at very early steps of program execution in order

to launch internal data structures. During the process, above sources are utilized to manage and control

the behavior of server applications and rarely the service chain of server could break or change once it enters

the process. Attackers take control of victims’ behavior by modifying configuration data structures. The server

application at runtime process can find file path of data and executable files. As a matter of fact, a web server

can prevent any malicious activity by a CGI program, which is a path directive. Configuration files are included

in a list of trusted and secured programs which specify the location of executable apps. If the configuration file

is manipulated through memory, it can potentially lead attackers to bypass access control [24].

5.3. User data property

During execution of authentication process for initializing remote user, security protocols validate

the user data identifications such as ID and group ID access privileges which are cached through memory for

granting access. Remote access decision utilizes cached information for data identification. The unauthorized

access could happen by changing the identity of the user and modifying cache information previously stored

in the memory [25]. The impact of this process usually takes place under Boolean variable on a single

register of memory.

5.4. Decision-making data

Decision making for authentication consists of multiple steps. Authentication of users is a critical

decision which can result in granting access and authorizing either the right users or intruders. However,

manipulating unprotected memory with binary codes is not an easy approach for attackers [17].

5.5. User input string

Another approach for intruders to lunch a successful attack is to use non-control-data attack by

changing user entry. In order to prevent this kind of attack, validating of inputs is vital and plays a key role in

reinforcing security policies. Intruder would gain control of system when modifications on user input takes

place after the validation process. The following step will be pursued in an attack: 1- First, legitimate data entry

is used to proceed through the validation process of an app. 2- Injection and modification of cached input data

is performed. 3- Finally, modified data is run and used to be considered as legitimate user data. This type of

attack is known as TOCTOU, i.e. Time of Check to Time of Use [18].

5.6. Vulnerabilities of server app services

There was a quick investigation done by CERT in 2015 which stated 87 memory vulnerabilities.

The Most well-known of these weaknesses are integer overflow, format string and buffer overflow, and etc. In

the study of [18] it was revealed that from 87 weaknesses, 73 of them are capable of exploits which are

mentioned in the following:

18% vulnerabilities of HTTP service,

10% vulnerabilities of database service,

8% vulnerabilities in remote login,

5% vulnerabilities in mail service,

and 4% vulnerabilities in FTP service.

There are many types of memory flaws and corruptions. Although a significant portion of these

vulnerabilities are illustrated in the Figure 2, which shows trends of incidents, there are many uncovered

weaknesses in non-control-data attacks that need to be investigated further.

  ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 3, November 2020: 98 – 105

102

Figure2. Incident reported to the U.S. computer emergency readliness Team by federal agencies, fiscal years

2006 through 2014

5.7. Heap corruption attacks

Memory corruption vulnerabilities could happen by TELNET and HTTP daemon. If the daemon is

run as root, HTTP or Telnet daemon let manipulation on configuration data user take place and let the intruder

get root shells. The point is that some HTTP daemons can be launched as an unprivileged user, i.e. a user with

special permissions such as the administrator. In this case, the root privilege compromises the whole system,

whether the attack is a control-data attack or a non-control data attack [25].

5.8. Stack buffer overflow attack against user input data

 Another sample of stack buffer overflow weaknesses could potentially be GHTTP and HTTP, which

have buffer overflow vulnerability in their login processes. In comparison with other types of memory

corruption, the stack overflow does not inject the code in random memory locations. The unsecure buffer on

the stack is the most popular spot to exploit. This vulnerability, which is known as stack smashing method, can

inject malicious codes to be written in stack in a return address and cause root compromise [26].

5.9. Attacking null httpd

Another type of memory corruption is Null HTTPD which is a web server in Linux [1]. There is an

available vulnerability which can be exploited by overwriting on heap memory while the entry function is using

the buffer. When the corrupted heap buffer is injected, the program control jumps to malicious codes and the

root is compromised.

6. PURPOSING COUNTERMEASURE TECHNIQUES

Reviewing all studies and research projects shows that several server applications must be protected

due to their vulnerabilities. There are several protective methods which are proposed in the following. As in a

conducted study [26], the countermeasures are categorized in two main methods: 1-security software, which

can secure and cover memory-safety from corruption. 2. Preventing memory overflow. In the following plenty

available security measures to avoid most of the novel attacks are presented:

 Some security measures are based on practical protection in below arrangements, such as:

 pointer restriction [27]

 random space addressing [28]

 Other types of security measures are based on integrity exploits in control flow attacks, such as:

 system call based on intrusion detection approaches [29-31]

 control data protection approaches [32-34]

 non-executable-memory-based protections [35]

6.1. Security-critical non-control data

As presented in a study done by Chen et al., there are some security-critical data applied by non-

control-data attacks, which are illustrated as follows:

Comput. Sci. Inf. Technol. 

Modification data attack inside computer systems: a critical review… (Vahid Kaviani J)

103

 Configuration data. Configuration files are used by a number of applications to identify and categorize

access control policies, as well as file path directives, so that the location of the secure executables is

determined. In order to initiate unintended applications (such as root shells), or even bypass the web server

access controls, an attacker may overwrite such configuration data.

 User input data. A very common approach in software engineering is to consider user input data as

distrusted, and apply those upon validation. In case an attacker alters the input data after it has gone through

validation process, the program could be executed with malicious input.

 User identity data. UIDs and GIDs are kept in memory as the common authentication procedures are being

executed. Upon modifications in the IDs, impersonating a user with administrative privileges could help an

attacker gain control over the program.

 Decision making data. One type of values used to make decisions in applications are Boolean values

(whether authenticated or not), which could be modified by an attacker to redirect the flow of the application

and make it run through unintended procedures.

In addition, Hu et al. [36] applied the following items to improve the previous types of

security-critical data:

 Passwords and private keys. Full privileges to a system might be given to an attacker upon disclosure of

passwords and private keys.

 Randomized values. A number of security related mechanisms (including CFI, ASLR, SSP) apply CFI

enforcement tags, random canary words, and randomized addresses. In case an attacker manages to get his

hands on the random canaries in the stack, he could perform stack-smashing attacks without the urge to

modify Stack Smashing Protector (SSP).

 System call parameters. Privilege escalation, or unintended execution of programs could be a result of

alterations in security-critical system calls’ parameters (such as execve, setuid).

6.2. Intrusion detection approach

One of the most essential approaches to secure the communications of network and stream of data is

IDS. Intrusion detection systems can be monitored based on the behavior of data packets and application

processes. Typically, the host base IDS inspects the memory and the system call. If any kind of deviation from

the normal model occurs at runtime, it will be considered as malicious activity and will be immediately blocked

at the very beginning of the process [37].

6.3. Control data protection techniques

Recent papers have investigated the methods to mitigate corruption of control data attacks. There are

two techniques, the compiler technique and the microprocessor architecture technique. In compiler technique,

DIRA is an automated compiler which uses integrity checker to make sure of the data flow. This technique is

the most popular security measure because control-data attacks are currently considered as the most dominant

attacks [38].

6.4. Memory safety enforcement

Another security software which can verify the safety of memory is CCured. This program tries to

estimate the portion of vulnerability of codes which, in turn, means it is based on analysis and static information

to avoid flaws such as null value in pointer or out of range addressing. This technique, which is known as type-

safety, is an inference algorithm to enforce the security of memory [39].

6.5. A challenge to overcome memory corruption attacks

The review of studies on this area shows that although, proposing a common and practical approach

to secure memory vulnerabilities and to stop memory corruption attacks is still an open and critical problem,

the special approaches can only overcome attacks by addressing different types of countermeasures depending

upon the exploit’s characteristics and the features of memory vulnerabilities. Most of the common defensive

techniques just provide control flow integrity. Hence, the security coverage is insufficient. Further studies in

the field to address constraints of deployments are inevitable and highly recommended [40].

7. CONCLUSION

The review of all these papers in the area of non-control and control data attack shows that there is no

ultimate security and reliable application to prevent all verities of modification data attacks. Recent researches

and studies in this scope.

  ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 3, November 2020: 98 – 105

104

REFERENCES
[1] Lazzez, A., Slimani, T. “Forensics investigation of web application security attacks.” International Journal of

Computer Network and Information Security, vol. 7, no. 3, pp. 10-17. 2015.

[2] Vasan, K. Keerthi and P. Arun Raj Kumar. “Taxonomy of SSL/TLS Attacks.” International Journal of Computer

Network and Information Security, vol. 8, no. 2, pp. 15-24, 2016.

[3] Iyengar, N. C. S., Banerjee, A., Ganapathy, G. “A fuzzy logic based defense mechanism against distributed denial of

service attack in cloud computing environment.” International Journal of Communication Networks and Information

Security, vol. 6, no. 3, pp. 233-245, 2014.

[4] Demay, Jonathan-Christofer & Totel, Eric & Tronel, Frederic. “Automatic Software Instrumentation for the

Detection of Non-control-data Attacks.” Recent Advances in Intrusion Detection: 12th International Symposium,

Proceedings, RAID 2009, Saint-Malo, France, pp. 348-349, September 23-25, 2009.

[5] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. “Non-control-data Attacks are Realistic

Threats.” 14th USENIX Security Symposium, pp. 177-191, 2005.

[6] Alexander Sotirov. “Bypassing Memory Protections: The Future of Exploitation.”

http://www.usenix.org/events/sec09/tech/slides/sotirov.pdf, 2009.

[7] Abadi, Martín, Budiu, Mihai, Erlingsson, Úlfar & Ligatti, Jay. “Control-flow integrity: Principles, implementations,

and applications.” ACM Trans. Inf. Syst. Secur. vol. 13, no. 1, 2009.

[8] Demay, J. C, Totel, Eric & Tronel, Frederic. “SIDAN: a tool dedicated to Software Instrumentation for Detecting

Attacks on Non-control-data.” Risks and Security of Internet and Systems (CRiSIS), 2009 Fourth International

Conference on IEEE, pp. 51-58, 2009.

[9] Khan, W. Z., Yang, X., Aalsalem, M. Y., Arshad, Q. “Comprehensive study of selective forwarding attack in wireless

sensor networks.” International Journal of Computer Network and Information Security, vol. 3, no. 1, pp. 1-10, 2011.

[10] Hu, Zhengbing, Vadym Mukhin, Heorhii Loutskii and Yaroslav Kornaga. “Stochastic RA-Network for the Nodes

Functioning Analysis in the Distributed Computer Systems.” International Journal of Computer Network and

Information Security, vol. 8, pp. 1-8, 2016.

[11] Kodada, Basappa B., Gaurav Prasad and Alwyn Roshan Pais. “Protection against DDoS and Data Modification

Attack in Computational Grid Cluster Environment.” International Journal of Computer Network and Information

Security, vol. 4, no. 7, pp. 12-18, 2012.

[12] Aleph One. “Smashing the stack for fun and profit.” Phrack Magazine, vol. 7, no. 49, 1996.

[13] Tim Newsham. Format String Attacks. https://seclists.org/bugtraq/2000/Sep/214

[14] CERT Security Advisories 1988-2004. Software Engineering Institute, http://www.cert.org/advisories/

[15] United States Computer Emergency Readiness Team.Technical Cyber Security Alerts, http://www.us-

cert.gov/cas/techalerts/

[16] Microsoft Security Bulletin, http://www.microsoft.com/technet/security/

[17] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker and B. Zorn. “Modular Protections against Non-control Data

Attacks.” 2011 IEEE 24th Computer Security Foundations Symposium, Cernay-la-Ville, pp. 131-145, 2011.

[18] J. R. Crandall and F. T. Chong. “Minos: Control Data Attack Prevention Orthogonal to Memory Model.” 37th

International Symposium on Microarchitecture (MICRO-37'04), Portland, OR, USA, pp. 221-232, 2004.

[19] Dhakar, Mradul and Akhilesh Kumar Tiwari. “A New Model for Intrusion Detection based on Reduced Error Pruning

Technique.” International Journal of Computer Network and Information Security, vol. 5, pp. 51-57, 2013.

[20] Kuperman, B. A., Brodley, C. E., Ozdoganoglu, H., Vijaykumar, T. N., Jalote, A. “Detection and prevention of stack

buffer overflow attacks.” Communications of the ACM, vol. 48, no. 11, pp. 50-56, 2005.

[21] Baratloo, T. Tsai, and N. Singh, “Transparent run-rime defense against stack smashing attacks.” In Proceedings of

USENIX Annual Technical Conference, June 2000.

[22] Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. “FormatGuard: Automatic protection from printf format

string vulnerabilities.” In Proceedings of the 10th USENIX Security Symposium, Washington, DC, August 2001.

[23] Melese, S. Z., & Avadhani, P. S. “Honeypot System for Attacks on SSH Protocol.” International Journal of Computer

Network and Information Security (IJCNIS), vol. 8, no. 9, pp. 19-26, 2016.

[24] The Apache Software Foundation. http://www.apache.org/

[25] Null HTTPd Remote Heap Overflow Vulnerability.http://www.securityfocus.com/bid/5774 and

http://www.securityfocus.com/bid/6255

[26] Ghttpd Log() Function Buffer Overflow Vulnerability.http://www.securityfocus.com/bid/5960

[27] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. “PointGuard: Protecting pointers from buffer overflow

vulnerabilities.” In Proceedings of the 12th USENIX Security Symposium. Washington, DC, August 2003.

[28] PaX Address Space Layout Randomization (ASLR).http://pax.grsecurity.net/docs/aslr.txt

[29] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B.Miller. “Formalizing sensitivity in static analysis for intrusion

detection.” In Proceedings of the 2004 IEEE Symposium on Security and Privacy, May 2004.

[30] Wilander, J., Kamkar, M. “A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention.” In

Network and Distributed System Security Symposium (NDSS), vol. 3, pp. 149-162, 2003.

[31] H. Feng, O. Kolesnikov, P. Fogla, W. Lee and W. “Gong.Anomaly detection using call stack information.” In

Proceedings of the 2003 IEEE Symposium on Security and Privacy, May 2003.

[32] J. R. Crandall and F. T. Chong. “Minos: Control data attack prevention orthogonal to memory model.” To appear in

Proceedings of the 37th International Symposium on Microarchitecture.Portland, OR. December 2004.

Comput. Sci. Inf. Technol. 

Modification data attack inside computer systems: a critical review… (Vahid Kaviani J)

105

[33] Smirnov and T. Chiueh. “DIRA: Automatic detection, identification and repair of control-data attacks.” In

Proceedings of the 12th Network and Distributed System Security Symposium (NDSS), San Diego, CA, February 3-

4, 2005.

[34] G. Suh, J. Lee, and S. “Devadas. Secure program execution via dynamic information flow tracking.” In Proceedings

of the 11th International Conference on Architectural Support for Programming Languages and Operating Systems.

Boston, MA. October 2004.

[35] S. Andersen and V. Abella. “Data Execution Prevention. Changes to Functionality in Microsoft Windows XP Service

Pack 2, Part 3: Memory Protection Technologies.”

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2mempr.mspx

[36] Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z. “Automatic generation of Data-Oriented Exploits.” In:

Proceedings of the USENIX Security Symposium, 2015.

[37] Barford, P., Kline, J., Plonka, D., Ron, A. “A signal analysis of network traffic anomalies.” In Proceedings of the

2nd ACM SIGCOMM Workshop on Internet measurement, ACM, pp. 71-82, 2002.

[38] O. Ruwase and M. S. Lam. “A practical dynamic buffer overflow detector.” In Proceedings of the 11th Annual

Network and Distributed System Security Symposium, pp. 159–169, February 2004.

[39] T.Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, Y. Wang. “Cyclone: A safe dialect of C.” In Proceedings of

USENIX Annual Technical Conference.Monterey, CA, June 2002.

[40] Jang, D., Tatlock, Z., & Lerner, S. “SafeDispatch: Securing C++ Virtual Calls from Memory Corruption Attacks.”

In Network and Distributed System Security Symposium (NDSS), 2014.

BIBLIOGRAPHIES OF AUTHORS

Vahid Kaviani is an Invited Lecturer in Computer Engineering Department at the IAUN University

and Security Trainer in Metaco Security Academy Institute. He received his Master degree in

Information Security from public university (UTM) University Technology of Malaysia. His recent

publications include Efficient High-Rate Key Management Technique for Wireless Body Area

Networks (IEEE explorer, 2016); Efficient Algorithm for Feature Intruder Detection System (IRJET,

2016); Gravitational Search Algorithm for Feature Selection in Intrusion Detection System (Master

Thesis, 2013). His research interests include SCADA & IDS vulnerabilities. He is currently teaching

computer courses in different universities and applying for PhD position in Information Security.

Parvin Ahmadi Doval Amiri received the B.Sc. Degree in in Software Engineering, Islamic Azad

University Kashan Branch, Kashan, Iran in 2009, the M.Sc. degree in Software Engineering, Islamic

Azad University Babol Branch, Ma-zandaran, Iran, in 2013, respectively, Sep. 2009 To now, She is

Full-Time Lecturer in Islamic Azad University Isfahan (Khorasgan) Branch sep 2009 to March 2017.

March 2015 to now she is expert and responsible for computer Laboratory at Faculty of Engineering.

Her research areas include Distributed Systems Specifically Cloud Computing, Cloud Federation,

Virtualization Technology, and Big Data management and processing approaches and Security related

issue in IoT and cloud computing and Distributed Systems.

Farsad Zamani Boroujeni received his PhD in Computer Science from Faculty of Computer Science

and Information Technology, University Putra Malaysia. Currently, he is working as a faculty member

at Azad University, Isfahan (Khorasgan) branch.

Nima Akhlaghi was born in Esfahan province in 1993. He is an IT Engineer with many expertize

knowledge and work experience in information security, system analysis and Network administration.

He graduated in B.C. from IAUN University. His last position was the director of student science

association in Computer Engineering faculty at IAUN University. Also he was the founder of IAUN

LUG when he was student at IAUN University. He worked in many startups and HiTech projects and

enterprises. He was a member of the Esfahan’s young elites association. His Recent works and

interests are in security application and security solutions. He has developed many security

countermeasures for Servers, IoTs, Apps and other type of systems.

