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 The global mental health crisis, intensified by the COVID-19 pandemic, 
placed unprecedented strain on healthcare systems and highlighted the 
urgent need for proactive crisis prevention strategies. This study investigated 
the effectiveness of various machine learning (ML) models in predicting 
mental health crises within 28 days post-hospitalization, leveraging an eight-
year longitudinal dataset. Multiple data preprocessing techniques, including 
feature selection (EFSA, RFECV), imputation, and class imbalance handling 

(SMOTE, Tomek links), were systematically applied to enhance model 
performance. Six traditional classifiers—logistic regression, support vector 
machine, k-nearest neighbors, naive Bayes, XGBoost, and AdaBoost—were 
evaluated alongside ensemble learning (EL) methods (bagging, boosting, 
stacking). Performance metrics such as accuracy, precision, recall, F1 score, 
and AUC-ROC were used for comprehensive assessment. Results 
demonstrated that ensemble methods, particularly boosting and bagging, 
consistently achieved high predictive accuracy (up to 93%), with XGBoost 

and AdaBoost emerging as top performers. Feature selection and class 
imbalance techniques further improved model robustness and 
generalizability. The findings underscored the potential of ML-driven 
approaches for early identification of at-risk patients, enabling more 
effective resource allocation and timely interventions in mental health care. 
Recommendations for integrating these predictive tools into clinical 
workflows were discussed to support data-driven decision-making.  
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1. INTRODUCTION 

Approximately one billion people globally live with a mental disorder [1]. The COVID-19 

pandemic has significantly intensified this worldwide mental health emergency, leading to an escalating need 

for mental healthcare services. This surge in demand is putting a strain on healthcare systems, which are 

already grappling with a shortage of qualified mental health personnel [2]. Mental disorders have the 

potential to significantly impact various aspects of life, encompassing academic or professional achievement, 

interactions with family and friends as well as engagement within the community [3], [4]. The global 
economy suffers a loss of $1 trillion annually due to decreased productivity caused by two prevalent mental 

disorders: anxiety and depression [5]. When considering overall mental issues, including reduced 
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productivity and the burden of illness, the global economic burden associated with this issue was estimated to 

be around $2.5 trillion in 2010, a figure projected to climb to $6 trillion by 2030 [6]. 

Prompt intervention can often prevent the worsening of symptoms that lead to mental health crises 

and subsequent hospitalization [7]. Unfortunately, patients often only access urgent care, such as a hospital or 

psychiatric facility, when they are already in the midst of a crisis [8]. At this stage, preventative measures are 

no longer an option, which limits the ability of psychiatric services to effectively allocate their already 

strained resources [9], [10]. Therefore, a key step in improving patient outcomes and managing caseloads is 
to identify individuals at risk of a crisis before it happens [11]. In busy clinical environments, manually 

reviewing vast amounts of patient data to make proactive care decisions is simply not feasible; it is 

unsustainable and prone to errors [9], [12]. Shifting these tasks to automated analysis of hospital records, 

however, offers a promising solution. This approach could revolutionize healthcare by enabling continuous, 

large-scale data review [13]. Research has already shown we can predict critical health events for many 

conditions, like hypertension, diabetes, circulatory failure, hospital readmission, and even in-hospital death 

[9], [14]. However, when it comes to mental health, the existing research mainly focuses on predicting 

specific events such as suicide, self-harm, or a first episode of psychosis [11]. We do not have as much 

information on continuously predicting the wider range of mental health crises that need urgent care or 

hospitalization. A lot is still unknown about whether we can continuously use machine learning to estimate 

the risk of an impending mental health crisis [15]. If we could, it would allow us to better allocate healthcare 

staff and potentially prevent crises from even happening [16]. In addition, it is not yet clear if new predictive 
technologies would be truly useful for mental healthcare practitioners, especially concerning their impact on 

health outcomes or long-term cost savings [17], [18]. 

Current clinical practice often relies on retrospective symptom assessment and self-reporting, which 

can be unreliable and reactive. Identifying individuals at high risk of impending mental health crises  

(e.g., severe depressive episodes, psychotic breaks, and suicidal ideation) is challenging due to the complex 

interplay of clinical, behavioural, social, and environmental factors. The lack of predictive tools leads to 

delayed intervention meaning patients receive care late, often when their condition is severe, requiring more 

intensive and costly interventions like inpatient hospitalization [9]. Additionally, increased suffering: 

Individuals endure prolonged periods of distress and functional impairment, and inefficient resource 

allocation- healthcare resources are often deployed reactively rather than strategically, leading to bottlenecks 

and potential burnout for mental health professionals. 
This study addresses important gaps by conducting a comprehensive comparison of machine 

learning models using an eight-year longitudinal dataset to predict mental health crises. It aims to identify 

key risk factors that contribute most to crisis prediction and evaluate the performance of different models. 

The findings provide valuable insights and practical recommendations for effectively integrating machine 

learning into mental health care systems. This approach has potential to improve early detection and timely 

intervention for at-risk patients. 
 

 

2. METHODOLOGY 

2.1.  Research design 
This study, a retrospective cohort study, focused on developing and assessing mental health crisis 

prediction models using existing health records. Retrospective cohort studies analyze already collected data to 

evaluate outcomes based on prior exposures or conditions. This research employs a quantitative methodology, 

leveraging a machine learning approach to predict mental health crises among patients within a 28-day period 

following hospitalization [9], [19]. Using this methodology allows for efficient analysis of large dataset and 

timely identification of at-risk patients, improving predictive accuracy and healthcare intervention. 
 

2.2.  Feature selection 

Feature selection involves choosing a subset of pertinent features from a larger pool of available 

features within a dataset [20]. It involves identifying and retaining the most informative and impactful 

features while discarding or disregarding less relevant or redundant ones [20]–[22]. Feature selection aims to 

enhance the performance, interpretability, and efficiency of machine learning models by concentrating on the 

most impactful aspects of the data [23]. This study tested two feature selection methods, and both were used 

for model construction. The two methods evaluated were the ensemble of feature selection algorithms 

(EFSA) and recursive feature elimination with cross-validation (RFECV). 
 

2.3.  Experimental procedure 

The procedure began with the dataset (comprising datasets from eight different years) being loaded 

into Google Colab. These datasets were then concatenated together to create a unified dataset. The next step 

involved data preprocessing, a crucial phase that encompasses several essential tasks [24]. Data cleaning was 
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performed to remove any inconsistencies or outliers, followed by data imputation to fill in missing values. 

Label encoding was applied to make the data numerical, and data exploration was conducted to unveil 

underlying trends and hidden patterns within the data [25]. The analysis also assessed class imbalance and 

involved feature selection to enhance model performance. Subsequently, the experiment moved on to model 

construction, where a variety of traditional ML models, including LR, SVM, K-NN, NB, XGBoost, and 

AdaBoost, were implemented. Furthermore, ensemble learning (EL) techniques, such as bagging, boosting, 
and stacking, were utilised to combine these models [26]. The next phase was model evaluation, in which the 

model's performance using an array of metrics such as accuracy, precision, recall, F1 score, kappa, geometric 

mean, and AUC-ROC was assessed [27]. This extensive experimental setup was created to make it easier to 

assess the study's results, improve their validity, and determine whether they might be replicated in other 

research settings. Google Colab Research was used to carry out empirical experiments. 

Figure 1 illustrates the workflow diagram outlining the entire experimental procedure used in this 

study. It begins with loading and preprocessing the dataset, followed by feature selection to identify the most 

relevant predictors. The workflow then proceeds to model development, including hyperparameter tuning and 

training multiple classifiers. Finally, the models are evaluated using performance metrics, and the results are 

analysed to determine the best predictive approach. Thus, Figure 1 provides a comprehensive overview of the 

systematic steps undertaken to ensure robust and reproducible machine learning experiments. 
 

 

 
 

Figure 1. Workflow diagram illustrating experimental procedure 
 

 

2.4.  Model 

In pursuit of the overarching goal of assessing the predictive capabilities of ML techniques, the 

primary objective was to evaluate how effectively machine learning techniques can predict mental health 

crises. To achieve this, models were built using an imputed dataset, which ensured the integrity and 

completeness of the data. This robust foundation allowed for more reliable and accurate predictive modeling. 
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Consequently, the study thoroughly assesses the potential of machine learning as a valuable tool in mental 

health crisis prediction. 

The predictive models themselves encompassed a selection of widely recognized classifiers, 

including two boosting classifiers known for their ability to enhance predictive performance [28]. The table 

below summarizes the sequential procedures taken to generate each predictive model and offers a thorough 

overview of the approaches used for model construction. The results of these model builds serve as essential 

instruments for evaluating how well machine learning techniques forecast mental health crises. In the end, 
the comparative analysis helps determine the most promising path for accurate mental health crisis 

predictions by illuminating the many approaches with differing degrees of effectiveness. 

Algorithm 1 outlines the step-by-step algorithm used for developing the machine learning models in 

this study. It details the data preprocessing stages such as loading the dataset, handling missing target values, 

and feature selection. Algorithm 1 also covers the classification workflow, including hyperparameter tuning, 

model training, prediction, performance evaluation, and resource usage monitoring across different 

classifiers. This structured approach ensures a comprehensive and reproducible model development process. 

Table 1 summarizes the different combinations of feature selection methods, number of selected 

features, and class imbalance strategies used in our models. The features selected in these models include key 

predictors such as historical symptom severity (total number and duration of crisis episodes), hospital 

interactions (unplanned contacts, missed appointments, recent crises), patient age, individual risk indices, and 

total time since the first hospital visit. As shown in Table 1, both EFSA and RFECV were applied, using 
either eight or five of these significant features, in combination with class imbalance techniques such as 

SMOTE and Tomek links. 

 

Algorithm 1. Machine learning model development 

Start Algorithm: 

1. Load the dataset. 

2. Remove instances with a null target variable. 

3. Apply feature selection to retain relevant features. 

4. Split the data into training and testing sets based on the specified ratio. 

5. Initialize an empty dictionary to store classifier results. 

6. For each classifier: 

− 6.1. Define the hyperparameter grid for hyperparameter tuning. 

− 6.2. Find the best parameters. 

− 6.3. Store the best parameters for the classifier. 

7. For each classifier: 

− 7.1. Initialise the classifier with the best hyperparameters. 

− 7.2. Start the timer and memory monitor. 

− 7.3. Train the classifier on the training data. 

− 7.4. Make predictions on the test set. 

− 7.5. Record the elapsed time and memory usage. 

− 7.6. Calculate performance metric 

− 7.7. Store the results in the dictionary with the classifier name as the key. 

8. Display the results from the dictionary for each classifier, including: 

− Classifier name 

− Best hyperparameters 

− Performance metrics 

− Elapsed time and memory usage 

End Algorithm. 

 

2.5.  Evaluation 

We approached the crisis prediction task as a binary classification problem [29]. The model was 

designed to predict the risk of a crisis developing within the next 28 days. To evaluate this, we used a time-
based split of the data: 80% for training, 10% for validation, and 10% for testing. The models developed in this 

study was assessed based on how accurately and effectively they identify patients at risk of a mental health 

crisis within 28 days following their hospitalization. Model efficacy was measured using a variety of 

performance indicators, including accuracy, precision, recall, F1 score, and AUC-ROC. Accuracy will provide 

a broad overview of the model's performance, whilst precision and recall will provide information about the 

model's capacity to accurately distinguish true positives vs false positives. The F1 score will function as a 

balanced assessment, which is especially relevant in healthcare settings where false negatives can have serious 
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repercussions. The AUC-ROC will help illustrate the trade-offs between sensitivity and specificity across 

different threshold settings, allowing for a more nuanced understanding of model performance. 
 

 

Table 1. Methods and techniques used to build models 
Model Feature selection method Number of features Class imbalance 

1 EFSA 8 None 

2 EFSA 8 SMOTE 

3 EFSA 8 Tomek links 

4 RFECV 5 None 

5 RFECV 5 SMOTE 

6 RFECV 5 Tomek links 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Features contributing to mental health crises 
The shapley additive explanations (SHAP) summary plot in Figure 2 illustrates the relative 

importance and directional impact of each feature on the model’s prediction of mental health crisis risk. 

Features are ranked by their overall influence, with “Days since last drug failure,” “Age,” and “Weeks since 

last crisis” emerging as the most significant predictors. High values for these features (indicated in red) are 

associated with an increased predicted risk of crisis, while low values (blue) tend to decrease risk. Notably, 

variables such as “Not diagnosed,” “Days since risk of suicide identified,” and “Weeks since last crisis 

episode” also contribute meaningfully to the model’s output. In contrast, features like “Never hospitalized,” 

“Never needed MHA,” and “Days since risk of substance misuse identified” have minimal impact, as 

reflected by their short SHAP bars. 

The present findings indicate that the most predictive features for mental health crisis risk closely 

align with the observations made by [29], Specifically, factors such as the historical severity of 
symptomsincluding the total number of crisis episodes and the duration of the last episodealong with 

interactions with the hospital, like unplanned contacts, missed appointments, or a recent crisis, were crucial 

predictors. Additionally, patient characteristics such as age, individual risk indices, and the total time since 

the patient’s first hospital visit significantly contributed to the model’s predictive power. 
 

 

 
 

Figure 2. The shapley additive explanations summary plot 
 

 

3.2.  Model 1 with EFSA features and hyperparameter tuning 

Model 1, shown in Table 2 constructed without class imbalance techniques, used EFSA-selected 

features, multivariate imputation by chained equations (MICE)-imputed data, and hyperparameter tuning. 

The model achieved higher accuracy, precision, recall, and F1 scores across classifiers, reflecting improved 

discriminatory power as illustrated in Table 2. EFSA identified critical features, while MICE ensured robust 

data quality. These strategies feature selection, imputation, and tuning collectively outperformed baselines, 

underscoring their efficacy in enhancing predictions despite omitting class imbalance adjustments. The 

combination of EFSA and hyperparameter tuning shows notable performance with SVM and LR classifiers 

achieving 0.88 accuracy. 
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Table 2. Model 1 performance with EFSA features and hyperparameter tuning 
Performance metrics Classifiers Boosting classifiers 

SVM DT LR K-NN XGBoost AdaBoost 

Accuracy 0.88 0.91 0.88 0.88 0.92 0.92 

Precision 0.89 0.93 0.86 0.86 0.91 0.91 

Recall 0.96 0.94 0.96 0.98 0.97 0.97 

F1 Score 0.92 0.93 0.92 0.91 0.94 0.94 

Roc Auc 0.86 0.90 0.86 0.83 0.89 0.89 

Kappa 0.75 0.80 0.75 0.71 0.81 0.81 

Geometric mean 0.85 0.90 0.85 0.82 0.89 0.89 

Balanced Acc 0.86 0.90 0.86 0.83 0.89 0.89 

Time (Sec) 0.05 0.006 0.05 0.04 0.49 0.28 

CPU (KB) 0 0 0 0 0 0 

 

 

3.3.  Model 2 with SMOTE, EFSA features, and hyperparameter tuning 

Model 2 used SMOTE to balance classes, alongside EFSA feature selection and hyperparameter 

tuning. Results, as shown in Table 3, show classifiers achieved strong accuracy, precision, and recall with 

balanced data. Hyperparameter tuning again proved effective. SMOTE’s synthetic instances risked 

misrepresenting data distributions, potentially limiting generalizability, but enabled robust minority-class 
handling. The Model 1 vs. 2 comparison highlights trade-offs: class balancing improved fairness, while 

tailored attributes optimized performance. Despite minor metric dips, Model 2’s integrated approach 

SMOTE, EFSA, and tuning underscores the value of balancing techniques in mental health prediction, even 

with inherent compromises, and this validates [9], that SMOTE does not increase accuracy in health 

predictions since sizes does not count. 
 

 

Table 3. Model 2 performance with SMOTE, EFSA features, and hyperparameter tuning 
Performance metrics Classifiers Boosting classifiers 

SVM DT LR K-NN XGBoost AdaBoost 

Accuracy 0.89 0.90 0.89 0.87 0.92 0.91 

Precision 0.89 0.92 0.86 0.88 0.93 0.92 

Recall 0.96 0.92 0.96 0.92 0.96 0.93 

F1 Score 0.92 0.92 0.92 0.90 0.94 0.93 

Roc Auc 0.86 0.89 0.86 0.84 0.91 0.89 

Kappa 0.75 0.77 0.75 0.69 0.82 0.79 

Geometric mean 0.85 0.88 0.85 0.84 0.91 0.89 

Balanced Acc 0.86 0.88 0.86 0.84 0.91 0.89 

Time (Sec) 0.07 0.006 0.05 0.02 0.21 0.56 

CPU (KB) 0 0 0 0 264 0 

 

 

3.4.  Model with tomek links, EFSA features, and hyperparameter tuning 

Model 3 uses a distinct class imbalance technique with Tomek links. Boosting classifiers, especially 

XGBoost, perform well, achieving 93% accuracy and 91% balanced accuracy as presented in Table 4. 

Compared to previous models, Model 3 shows slightly higher accuracy than Model 2. Though Tomek links 

don’t fully balance classes, they highlight the importance of tailored imbalance handling, despite potential 

information loss in the “No” class affecting generalization. 
 

 

Table 4. Model 3 performance with Tomek links, EFSA features, and hyperparameter tuning 
Performance metrics Classifiers Boosting classifiers 

SVM DT LR K-NN XGBoost AdaBoost 

Accuracy 0.89 0.92 0.89 0.87 0.93 0.92 

Precision 0.89 0.93 0.86 0.87 0.93 0.91 

Recall 0.96 0.95 0.96 0.96 0.96 0.98 

F1 Score 0.92 0.94 0.92 0.91 0.94 0.94 

Roc Auc 0.86 0.90 0.86 0.84 0.91 0.89 

Kappa 0.75 0.81 0.75 0.71 0.83 0.82 

Geometric mean 0.85 0.90 0.85 0.82 0.91 0.89 

Balanced Acc 0.86 0.90 0.86 0.84 0.91 0.89 

Time (Sec) 0.09 0.01 0.09 0.04 0.27 0.28 

CPU (KB) 0 0 0 0 0 0 

 

 

3.5.  Model with RFECV features and hyperparameter tuning 

Model 4, like Model 1, does not apply any class imbalance technique and uses hyperparameter 

tuning, but distinguishes itself by employing RFECV for feature selection. This approach investigates the 
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effect of optimal feature selection on model performance, as shown in Table 5. Model 4 achieves high 

accuracy, precision, and recall (accuracies from 0.89 to 0.93) and this is consistent with [27] that RFECV 

yields greater accuracy in mental health predictions. While RFECV may reduce feature space and risk 

information loss, its refined selection clearly boosts overall model effectiveness for mental health prediction.  

 

 
Table 5. Model 4 performance with RFECV features and hyperparameter tuning 

Performance metrics Classifiers Boosting classifiers 

SVM DT LR K-NN XGBoost AdaBoost 

Accuracy 0.93 0.93 0.89 0.92 0.93 0.92 

Precision 0.92 0.92 0.86 0.92 0.92 0.91 

Recall 0.97 0.97 0.96 0.96 0.97 0.98 

F1 Score 0.95 0.95 0.92 0.94 0.95 0.94 

Roc Auc 0.91 0.91 0.86 0.90 0.91 0.90 

Kappa 0.83 0.83 0.75 0.82 0.83 0.82 

Geometric mean 0.91 0.91 0.85 0.90 0.91 0.89 

Balanced Acc 0.91 0.91 0.86 0.90 0.91 0.90 

Time (Sec) 0.03 0.004 0.007 0.02 0.06 0.25 

PU (KB) 0 0 0 0 0 0 

 
 

3.6.  Model with SMOTE, RFECV features, and hyperparameter tuning 

Model 5 mirrors Model 2 by using SMOTE and hyperparameter tuning but further narrows its focus 

to just three key RFECV-selected features. This streamlined approach highlights the impact of SMOTE 

resampling and a compact feature set. As shown in Table 6, most classifiers improved, with SVM, DT,  

K-NN, and XGBoost achieving up to 0.93 accuracy. While this method boosts performance over baselines, 

the limited features and synthetic data may limit adaptability and generalizability. 

 

 

Table 6. Model 5 performance with SMOTE, RFECV features and hyperparameter tuning 
Performance metrics Classifiers Boosting classifiers 

SVM DT LR K-NN XGBoost AdaBoost 

Accuracy 0.93 0.93 0.89 0.92  0.93  0.92 

Precision 0.92 0.92 0.86 0.92 0.92  0.91 

Recall 0.97 0.97 0.96 0.96 0.97  0.98 

F1 Score 0.95 0.95 0.92 0.94 0.95  0.94 

Roc Auc 0.91 0.91 0.86 0.90 0.91  0.90 

Kappa 0.83 0.83 0.75 0.82 0.83  0.82 

Geometric mean 0.91 0.91 0.85 0.90 0.91  0.89 

Balanced Acc 0.91 0.91 0.86 0.90 0.91  0.90 

Time (Sec) 0.03 0.004 0.007 0.02 0.06  0.25 

CPU (KB) 0 0 0 0 0  0 

 

 

3.7.  Model with tomek links, RFECV features and hyperparameter tuning 

Model 6 in Table 7 adopts the same strategy as Model 3, using Tomek links for class imbalance, 
hyperparameter tuning, and RFECV for feature selection. Its key distinction lies in the specific features 

chosen. The combination of Tomek links and RFECV-selected features leads to notable performance gains, 

with SVM and DT classifiers achieving 0.93 accuracy. Model 6 shows clear improvements across accuracy, 

precision, and recall, highlighting the synergy of class imbalance handling and targeted feature selection. 

Table 8 shows the results of the algorithms with Tomek links, RFECV features, and hyperparameter tuning. 
 

 

Table 7. Model 6 performance with Tomek links, RFECV features, and hyperparameter tuning 
Performance metrics Classifiers Boosting classifiers 

SVM DT LR K-NN XGBoost AdaBoost 

Accuracy 0.93 0.93 0.89 0.92 0.93 0.92 

Precision 0.93 0.92 0.86 0.92 0.92 0.91 

Recall 0.97 0.97 0.96 0.96 0.97 0.98 

F1 Score 0.95 0.95 0.92 0.94 0.95 0.94 

Roc Auc 0.91 0.91 0.86 0.90 0.91 0.90 

Kappa 0.83 0.3 0.75 0.82 0.83 0.82 

Geometric mean 0.91 0.91 0.85 0.90 0.91 0.89 

Balanced Acc 0.91 0.91 0.86 0.90 0.91 0.90 

Time (Sec) 0.04 0.003 0.007 0.02 0.05 0.25 

CPU (KB) 0 0 0 0 0 0 
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A comprehensive evaluation of various model configurations highlights the importance of tailored 

machine learning techniques for mental health prediction. Approaches such as SMOTE, Tomek links, EFSA, 

and RFECV all contributed to improved performance, with hyperparameter tuning further boosting results. 

SVM and DT classifiers consistently achieved high accuracy, peaking at 93%. However, potential drawbacks 

include information loss from feature selection and limitations of imbalance techniques. Cross-validation 

proved essential for assessing model robustness and generalizability. XGBoost stood out as the top performer 

across most metrics, while AdaBoost excelled in Model 4. SVM and DT also delivered strong results, nearly 
matching XGBoost’s proficiency. 
 

3.8.  Ensemble learning 

The results obtained when applying the three commonly used EL methods—bagging, boosting, and 

stacking are presented in Table 8. Ensemble methods are machine learning techniques that combine the 
predictions from multiple models to improve overall accuracy and performance. Bagging focuses on reducing 

variance by aggregating results from several models trained on different data samples, while boosting aims to 

reduce bias by sequentially correcting errors from previous models. Stacking further enhances performance 

by training a final model to best combine the outputs of various individual models, providing a 

comprehensive approach to predictive modelling. 
 

3.8.1. Bagging 

The bagging EL method was implemented using three diverse classifiers: DT, SVM, and K-NN. 

Each classifier individually performed well, and their algorithmic diversity enhanced the ensemble’s 

overall robustness and accuracy. As shown in Table 8, the bagging model achieved an accuracy of 0.927, 

precision of 0.936, and recall of 0.955. The F1 score reached 0.945, and the ROC AUC was 0.913, 

indicating strong discriminatory power. The kappa coefficient (0.835), geometric mean (0.912), and 

balanced accuracy (0.913) further confirm model stability. With a training time of just 0.151 seconds and 

low memory usage, this bagging-SMOTE approach proves both effective and computationally efficient for 

mental disorder prediction. 
 

3.8.2. Boosting 

The boosting EL method was implemented using DT and AdaBoost, resulting in outstanding 

performance that surpassed other classifier combinations. DT served as a strong base model, while AdaBoost 

iteratively corrected its errors, leading to enhanced results AdaBoost achieved 92% accuracy and DT 93%. 

This approach leveraged both model diversity and boosting synergy for greater resilience. The method was 
tested with both SMOTE and Tomek links for class imbalance, each yielding distinct results while the ROC 

curve remained consistently high (0.91). Overall, the boosting ensemble method demonstrated superior 

precision, recall, and robust discriminatory power for mental disorder prediction. 
 

3.8.3. Stacking 

The stacking EL method integrates a range of high-performing base classifiers-DT, SVM, K-NN, 

and XGBoost-each contributing unique algorithmic perspectives and strengths. By combining their 

predictions through a meta-learner, the stacking ensemble effectively leverages this diversity to enhance 

overall predictive performance. Results, detailed in Table 8, highlight the method’s ability to capitalize on the 

strengths of each classifier. Achieving a robust ROC AUC of 91%, the stacking approach demonstrates 

strong, reliable model performance, comparable to the Boosting EL method. 

When comparing the EL methods presented above, distinct patterns in their performance are 

observed with each EL method demonstrating its unique advantages. As observed in Table 8, the 

performance metrics of different EL methods (SMOTE Bagging, SMOTE Boosting, SMOTE Stacking, and 

Tomek links Boosting) are displayed. Each method employs various classifiers and techniques to combine 

their predictions, aiming to enhance overall model performance. 
Based on the presented metrics, SMOTE Bagging, SMOTE Boosting, and SMOTE Stacking all 

yield the same accuracy, precision, recall, F1 score, ROC AUC, geometric mean, and balanced accuracy 

values of 0.91. Tomek links Boosting lags slightly behind with an accuracy of 0.93, precision of 0.92, recall 

of 0.97, F1 score of 0.95, ROC AUC of 0.91, and lower kappa of 0.83, as shown in Table 8. Considering the 

results of models 1 to 5, where it was observed that boosting classifiers tended to perform better across 

various models and datasets, it can be inferred that SMOTE Boosting might be the most effective EL method 

among the four. This is because boosting methods excel in correcting errors in base models and using their 

collective strengths. The SMOTE Boosting method achieved comparable metrics with other methods, such as 

Bagging and Stacking, requiring minimal training time (0.01 seconds) and negligible memory usage. Our 

findings resonate with [9], who concluded that ensemble-learning methods boost accuracy in mental health 

predictions.  



Comput Sci Inf Technol  ISSN: 2722-3221  

 

A machine learning approach for early prediction of mental health crises (Hassan Chigagure) 

343 

While SMOTE Boosting demonstrates strong overall performance across various metrics, there are 

situations where Tomek links Boosting might be preferred. In the real world, the dataset is not always 

balanced. If the dataset is particularly sensitive to class imbalance and focuses on accurately predicting the 

minority class (e.g., mental health), Tomek links Boosting might be more suitable. It showed the highest 

recall (0.97) among the compared EL methods, indicating its effectiveness in correctly identifying instances 

of the minority class. 
 

 

Table 8. Ensemble learning results 
Performance metrics Ensemble learning 

SMOTE Bagging SMOTE Boosting SMOTE Stacking Tomek Links Boosting 

Accuracy 0.93 0.93 0.93 0.93 

Precision 0.94 0.94 0.94 0.92 

Recall 0.96 0.96 0.96 0.97 

F1 Score 0.95 0.95 0.95 0.95 

Roc AUC 0.91 0.91 0.91 0.91 

Kappa 0.84 0.84 0.84 0.83 

Geometric mean 0.91 0.91 0.91 0.91 

Balanced Acc 0.91 0.91 0.91 0.91 

Time (Sec) 0.15 0.01 0.78 0.02 

CPU (KB) 0 0 0 0 

 

 

3.9.  Confusion matrix for the best model 

When it is essential to avoid missing a true positive-for instance, in situations like healthcare or 

safety-sensitive environments-the high recall score achieved by Tomek Links Boosting is particularly 

advantageous, as shown in Table 8. This approach effectively identifies the majority of true cases within the 

minority class. Figure 3 presents the corresponding confusion matrix, detailing the model’s predictions: 
64,891 true positives (correctly identified mental health crises, 29,678 true negatives, 987 false positives, and 

only 111 false negatives. Minimizing false negatives is essential, as missing individuals needing assistance 

can have serious consequences. While Tomek Links Boosting may have slightly lower accuracy and 

precision than other methods, its balanced accuracy and geometric mean are comparable, indicating a strong 

trade-off between class representation and overall performance. Removing near-neighbor instances via 

Tomek links sharpens decision boundaries, potentially improving generalization and reducing overfitting, 

especially with complex or noisy data. Overall, the ensemble methods evaluated demonstrate robust 

predictive power and practical efficiency for mental disorder prediction. While SMOTE Boosting remains a 

strong option, this study favours Tomek Links Boosting due to its exceptional 97% recall, aligning with the 

critical goal of accurately identifying those needing mental health intervention and support. 
 

 

 
 

Figure 3. Confusion matrix for Tomek links boosting ensemble learning 
 

 

4. CONCLUSION 

This study provides a comprehensive comparison of ML techniques for predicting mental health 
crises using a large, longitudinal dataset. Ensemble methods, particularly XGBoost and TlBE, demonstrated 

superior performance in accuracy, recall, and balanced accuracy. Key risk factors identified include prior 

hospitalizations, medication adherence, and recent behavioral indicators. These findings suggest that 

integrating machine learning models into mental healthcare could significantly enhance early identification 

and intervention for individuals at risk. 
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