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The global mental health crisis, intensified by the COVID-19 pandemic,
placed unprecedented strain on healthcare systems and highlighted the
urgent need for proactive crisis prevention strategies. This study investigated
the effectiveness of various machine learning (ML) models in predicting
mental health crises within 28 days post-hospitalization, leveraging an eight-
year longitudinal dataset. Multiple data preprocessing techniques, including
feature selection (EFSA, RFECV), imputation, and class imbalance handling
(SMOTE, Tomek links), were systematically applied to enhance model
performance. Six traditional classifiers—Ilogistic regression, support vector
machine, k-nearest neighbors, naive Bayes, XGBoost, and AdaBoost—were
evaluated alongside ensemble learning (EL) methods (bagging, boosting,
stacking). Performance metrics such as accuracy, precision, recall, F1 score,
and AUC-ROC were used for comprehensive assessment. Results
demonstrated that ensemble methods, particularly boosting and bagging,
consistently achieved high predictive accuracy (up to 93%), with XGBoost
and AdaBoost emerging as top performers. Feature selection and class
imbalance  techniques further improved model robustness and
generalizability. The findings underscored the potential of ML-driven
approaches for early identification of at-risk patients, enabling more
effective resource allocation and timely interventions in mental health care.
Recommendations for integrating these predictive tools into clinical
workflows were discussed to support data-driven decision-making.
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1. INTRODUCTION

Approximately one billion people globally live with a mental disorder [1]. The COVID-19
pandemic has significantly intensified this worldwide mental health emergency, leading to an escalating need
for mental healthcare services. This surge in demand is putting a strain on healthcare systems, which are
already grappling with a shortage of qualified mental health personnel [2]. Mental disorders have the
potential to significantly impact various aspects of life, encompassing academic or professional achievement,
interactions with family and friends as well as engagement within the community [3], [4]. The global
economy suffers a loss of $1 trillion annually due to decreased productivity caused by two prevalent mental
disorders: anxiety and depression [5]. When considering overall mental issues, including reduced
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productivity and the burden of illness, the global economic burden associated with this issue was estimated to
be around $2.5 trillion in 2010, a figure projected to climb to $6 trillion by 2030 [6].

Prompt intervention can often prevent the worsening of symptoms that lead to mental health crises
and subsequent hospitalization [7]. Unfortunately, patients often only access urgent care, such as a hospital or
psychiatric facility, when they are already in the midst of a crisis [8]. At this stage, preventative measures are
no longer an option, which limits the ability of psychiatric services to effectively allocate their already
strained resources [9], [10]. Therefore, a key step in improving patient outcomes and managing caseloads is
to identify individuals at risk of a crisis before it happens [11]. In busy clinical environments, manually
reviewing vast amounts of patient data to make proactive care decisions is simply not feasible; it is
unsustainable and prone to errors [9], [12]. Shifting these tasks to automated analysis of hospital records,
however, offers a promising solution. This approach could revolutionize healthcare by enabling continuous,
large-scale data review [13]. Research has already shown we can predict critical health events for many
conditions, like hypertension, diabetes, circulatory failure, hospital readmission, and even in-hospital death
[9], [14]. However, when it comes to mental health, the existing research mainly focuses on predicting
specific events such as suicide, self-harm, or a first episode of psychosis [11]. We do not have as much
information on continuously predicting the wider range of mental health crises that need urgent care or
hospitalization. A lot is still unknown about whether we can continuously use machine learning to estimate
the risk of an impending mental health crisis [15]. If we could, it would allow us to better allocate healthcare
staff and potentially prevent crises from even happening [16]. In addition, it is not yet clear if new predictive
technologies would be truly useful for mental healthcare practitioners, especially concerning their impact on
health outcomes or long-term cost savings [17], [18].

Current clinical practice often relies on retrospective symptom assessment and self-reporting, which
can be unreliable and reactive. Identifying individuals at high risk of impending mental health crises
(e.g., severe depressive episodes, psychotic breaks, and suicidal ideation) is challenging due to the complex
interplay of clinical, behavioural, social, and environmental factors. The lack of predictive tools leads to
delayed intervention meaning patients receive care late, often when their condition is severe, requiring more
intensive and costly interventions like inpatient hospitalization [9]. Additionally, increased suffering:
Individuals endure prolonged periods of distress and functional impairment, and inefficient resource
allocation- healthcare resources are often deployed reactively rather than strategically, leading to bottlenecks
and potential burnout for mental health professionals.

This study addresses important gaps by conducting a comprehensive comparison of machine
learning models using an eight-year longitudinal dataset to predict mental health crises. It aims to identify
key risk factors that contribute most to crisis prediction and evaluate the performance of different models.
The findings provide valuable insights and practical recommendations for effectively integrating machine
learning into mental health care systems. This approach has potential to improve early detection and timely
intervention for at-risk patients.

2. METHODOLOGY
2.1. Research design

This study, a retrospective cohort study, focused on developing and assessing mental health crisis
prediction models using existing health records. Retrospective cohort studies analyze already collected data to
evaluate outcomes based on prior exposures or conditions. This research employs a quantitative methodology,
leveraging a machine learning approach to predict mental health crises among patients within a 28-day period
following hospitalization [9], [19]. Using this methodology allows for efficient analysis of large dataset and
timely identification of at-risk patients, improving predictive accuracy and healthcare intervention.

2.2. Feature selection

Feature selection involves choosing a subset of pertinent features from a larger pool of available
features within a dataset [20]. It involves identifying and retaining the most informative and impactful
features while discarding or disregarding less relevant or redundant ones [20]-[22]. Feature selection aims to
enhance the performance, interpretability, and efficiency of machine learning models by concentrating on the
most impactful aspects of the data [23]. This study tested two feature selection methods, and both were used
for model construction. The two methods evaluated were the ensemble of feature selection algorithms
(EFSA) and recursive feature elimination with cross-validation (RFECV).

2.3. Experimental procedure

The procedure began with the dataset (comprising datasets from eight different years) being loaded
into Google Colab. These datasets were then concatenated together to create a unified dataset. The next step
involved data preprocessing, a crucial phase that encompasses several essential tasks [24]. Data cleaning was
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performed to remove any inconsistencies or outliers, followed by data imputation to fill in missing values.
Label encoding was applied to make the data numerical, and data exploration was conducted to unveil
underlying trends and hidden patterns within the data [25]. The analysis also assessed class imbalance and
involved feature selection to enhance model performance. Subsequently, the experiment moved on to model
construction, where a variety of traditional ML models, including LR, SVM, K-NN, NB, XGBoost, and
AdaBoost, were implemented. Furthermore, ensemble learning (EL) techniques, such as bagging, boosting,
and stacking, were utilised to combine these models [26]. The next phase was model evaluation, in which the
model's performance using an array of metrics such as accuracy, precision, recall, F1 score, kappa, geometric
mean, and AUC-ROC was assessed [27]. This extensive experimental setup was created to make it easier to
assess the study's results, improve their validity, and determine whether they might be replicated in other
research settings. Google Colab Research was used to carry out empirical experiments.

Figure 1 illustrates the workflow diagram outlining the entire experimental procedure used in this
study. It begins with loading and preprocessing the dataset, followed by feature selection to identify the most
relevant predictors. The workflow then proceeds to model development, including hyperparameter tuning and
training multiple classifiers. Finally, the models are evaluated using performance metrics, and the results are
analysed to determine the best predictive approach. Thus, Figure 1 provides a comprehensive overview of the
systematic steps undertaken to ensure robust and reproducible machine learning experiments.

LOAD DATASET

DATA PREPROCESSING
[ | DATA CLEANING | ]—)[ | DATA IMPUTATION | ]—)[ | LABEL ENCODING | ]

[ |DATAEXPLOHAT\ON| ] [ | CLASS IMBALANCE | ]—)[ |FEATURESELECTION| ]
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Figure 1. Workflow diagram illustrating experimental procedure

2.4. Model

In pursuit of the overarching goal of assessing the predictive capabilities of ML techniques, the
primary objective was to evaluate how effectively machine learning techniques can predict mental health
crises. To achieve this, models were built using an imputed dataset, which ensured the integrity and
completeness of the data. This robust foundation allowed for more reliable and accurate predictive modeling.
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Consequently, the study thoroughly assesses the potential of machine learning as a valuable tool in mental
health crisis prediction.

The predictive models themselves encompassed a selection of widely recognized classifiers,
including two boosting classifiers known for their ability to enhance predictive performance [28]. The table
below summarizes the sequential procedures taken to generate each predictive model and offers a thorough
overview of the approaches used for model construction. The results of these model builds serve as essential
instruments for evaluating how well machine learning techniques forecast mental health crises. In the end,
the comparative analysis helps determine the most promising path for accurate mental health crisis
predictions by illuminating the many approaches with differing degrees of effectiveness.

Algorithm 1 outlines the step-by-step algorithm used for developing the machine learning models in
this study. It details the data preprocessing stages such as loading the dataset, handling missing target values,
and feature selection. Algorithm 1 also covers the classification workflow, including hyperparameter tuning,
model training, prediction, performance evaluation, and resource usage monitoring across different
classifiers. This structured approach ensures a comprehensive and reproducible model development process.

Table 1 summarizes the different combinations of feature selection methods, number of selected
features, and class imbalance strategies used in our models. The features selected in these models include key
predictors such as historical symptom severity (total number and duration of crisis episodes), hospital
interactions (unplanned contacts, missed appointments, recent crises), patient age, individual risk indices, and
total time since the first hospital visit. As shown in Table 1, both EFSA and RFECV were applied, using
either eight or five of these significant features, in combination with class imbalance techniques such as
SMOTE and Tomek links.

Algorithm 1. Machine learning model development
Start Algorithm:
1. Load the dataset.
2. Remove instances with a null target variable.
3. Apply feature selection to retain relevant features.
4. Split the data into training and testing sets based on the specified ratio.
5. Initialize an empty dictionary to store classifier results.
6. For each classifier:
—6.1. Define the hyperparameter grid for hyperparameter tuning.
—6.2. Find the best parameters.
—6.3. Store the best parameters for the classifier.
7. For each classifier:
—7.1. Initialise the classifier with the best hyperparameters.
—7.2. Start the timer and memory monitor.
—7.3. Train the classifier on the training data.
—7.4. Make predictions on the test set.
—7.5. Record the elapsed time and memory usage.
—7.6. Calculate performance metric
—7.7. Store the results in the dictionary with the classifier name as the key.
8. Display the results from the dictionary for each classifier, including:
—Classifier name
—Best hyperparameters
—Performance metrics
—Elapsed time and memory usage
End Algorithm.

2.5. Evaluation

We approached the crisis prediction task as a binary classification problem [29]. The model was
designed to predict the risk of a crisis developing within the next 28 days. To evaluate this, we used a time-
based split of the data: 80% for training, 10% for validation, and 10% for testing. The models developed in this
study was assessed based on how accurately and effectively they identify patients at risk of a mental health
crisis within 28 days following their hospitalization. Model efficacy was measured using a variety of
performance indicators, including accuracy, precision, recall, F1 score, and AUC-ROC. Accuracy will provide
a broad overview of the model's performance, whilst precision and recall will provide information about the
model's capacity to accurately distinguish true positives vs false positives. The F1 score will function as a
balanced assessment, which is especially relevant in healthcare settings where false negatives can have serious
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repercussions. The AUC-ROC will help illustrate the trade-offs between sensitivity and specificity across
different threshold settings, allowing for a more nuanced understanding of model performance.

Table 1. Methods and techniques used to build models
Model Feature selection method Number of features  Class imbalance

1 EFSA 8 None

2 EFSA 8 SMOTE

3 EFSA 8 Tomek links
4 RFECV 5 None

5 RFECV 5 SMOTE

6 RFECV 5 Tomek links

3. RESULTS AND DISCUSSION
3.1. Features contributing to mental health crises

The shapley additive explanations (SHAP) summary plot in Figure 2 illustrates the relative
importance and directional impact of each feature on the model’s prediction of mental health crisis risk.
Features are ranked by their overall influence, with “Days since last drug failure,” “Age,” and “Weeks since
last crisis” emerging as the most significant predictors. High values for these features (indicated in red) are
associated with an increased predicted risk of crisis, while low values (blue) tend to decrease risk. Notably,
variables such as “Not diagnosed,” “Days since risk of suicide identified,” and “Weeks since last crisis
episode” also contribute meaningfully to the model’s output. In contrast, features like “Never hospitalized,”
“Never needed MHA,” and “Days since risk of substance misuse identified” have minimal impact, as
reflected by their short SHAP bars.

The present findings indicate that the most predictive features for mental health crisis risk closely
align with the observations made by [29], Specifically, factors such as the historical severity of
symptomsincluding the total number of crisis episodes and the duration of the last episodealong with
interactions with the hospital, like unplanned contacts, missed appointments, or a recent crisis, were crucial
predictors. Additionally, patient characteristics such as age, individual risk indices, and the total time since
the patient’s first hospital visit significantly contributed to the model’s predictive power.

Mever hospitalized

Never needed MHA

Days since risk of substance misuse identified
Dys since last crisis

Weeks since last missed appointment

Days since last unplanned contact

F6 disorders of adult personality and behavior
Weeks since last internal discharge

Days since risk of self-harm identified

Weeks since last referral

Mumber of crisis episodes

Mumber of days since first visit

Days since risk of suicide identified

Mot diagnosed

Weeks since completed treatment discharge

Weeks since last referral from acute services
Days since last crisis episode

Weeks since last crisis

Age

Days since last drug failure

v Feature value sgn

Feature

-1.0 -05 0.0 0.5 1.0
SHAP value (effect on model output)

Figure 2. The shapley additive explanations summary plot

3.2. Model 1 with EFSA features and hyperparameter tuning

Model 1, shown in Table 2 constructed without class imbalance techniques, used EFSA-selected
features, multivariate imputation by chained equations (MICE)-imputed data, and hyperparameter tuning.
The model achieved higher accuracy, precision, recall, and F1 scores across classifiers, reflecting improved
discriminatory power as illustrated in Table 2. EFSA identified critical features, while MICE ensured robust
data quality. These strategies feature selection, imputation, and tuning collectively outperformed baselines,
underscoring their efficacy in enhancing predictions despite omitting class imbalance adjustments. The
combination of EFSA and hyperparameter tuning shows notable performance with SVM and LR classifiers
achieving 0.88 accuracy.
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Table 2. Model 1 performance with EFSA features and hyperparameter tuning

Performance metrics Classifiers Boosting classifiers
SVM DT LR K-NN  XGBoost AdaBoost

Accuracy 0.88 0.91 0.88 0.88 0.92 0.92
Precision 0.89 0.93 0.86 0.86 0.91 0.91
Recall 0.96 0.94 0.96 0.98 0.97 0.97
F1 Score 0.92 0.93 0.92 0.91 0.94 0.94
Roc Auc 0.86 0.90 0.86 0.83 0.89 0.89
Kappa 0.75 0.80 0.75 0.71 0.81 0.81
Geometric mean 0.85 0.90 0.85 0.82 0.89 0.89
Balanced Acc 0.86 0.90 0.86 0.83 0.89 0.89
Time (Sec) 0.05  0.006 0.05 0.04 0.49 0.28
CPU (KB) 0 0 0 0 0 0

3.3. Model 2 with SMOTE, EFSA features, and hyperparameter tuning

Model 2 used SMOTE to balance classes, alongside EFSA feature selection and hyperparameter
tuning. Results, as shown in Table 3, show classifiers achieved strong accuracy, precision, and recall with
balanced data. Hyperparameter tuning again proved effective. SMOTE’s synthetic instances risked
misrepresenting data distributions, potentially limiting generalizability, but enabled robust minority-class
handling. The Model 1 vs. 2 comparison highlights trade-offs: class balancing improved fairness, while
tailored attributes optimized performance. Despite minor metric dips, Model 2’s integrated approach
SMOTE, EFSA, and tuning underscores the value of balancing techniques in mental health prediction, even
with inherent compromises, and this validates [9], that SMOTE does not increase accuracy in health
predictions since sizes does not count.

Table 3. Model 2 performance with SMOTE, EFSA features, and hyperparameter tuning

Performance metrics Classifiers Boosting classifiers
SVM DT LR K-NN XGBoost AdaBoost

Accuracy 0.89 090 089 087 0.92 0.91
Precision 089 092 086 088 0.93 0.92
Recall 096 092 096 092 0.96 0.93
F1 Score 092 092 092 090 0.94 0.93
Roc Auc 086 089 086 084 0.91 0.89
Kappa 075 077 075 0.69 0.82 0.79
Geometric mean 0.85 088 085 0.84 091 0.89
Balanced Acc 086 0.88 086 084 0.91 0.89
Time (Sec) 0.07 0.006 0.05 0.02 0.21 0.56
CPU (KB) 0 0 0 0 264 0

3.4. Model with tomek links, EFSA features, and hyperparameter tuning

Model 3 uses a distinct class imbalance technique with Tomek links. Boosting classifiers, especially
XGBoost, perform well, achieving 93% accuracy and 91% balanced accuracy as presented in Table 4.
Compared to previous models, Model 3 shows slightly higher accuracy than Model 2. Though Tomek links
don’t fully balance classes, they highlight the importance of tailored imbalance handling, despite potential
information loss in the “No” class affecting generalization.

Table 4. Model 3 performance with Tomek links, EFSA features, and hyperparameter tuning

Performance metrics Classifiers Boosting classifiers
SVM DT LR K-NN XGBoost AdaBoost

Accuracy 089 092 089 087 0.93 0.92
Precision 089 093 086 0.87 0.93 091
Recall 096 095 096 0.96 0.96 0.98
F1 Score 092 094 092 0091 0.94 0.94
Roc Auc 086 090 086 0.84 091 0.89
Kappa 075 081 075 071 0.83 0.82
Geometric mean 0.85 0.90 0.85 0.82 0.91 0.89
Balanced Acc 086 090 086 0.84 091 0.89
Time (Sec) 0.09 001 0.09 0.04 0.27 0.28
CPU (KB) 0 0 0 0 0 0

3.5. Model with RFECV features and hyperparameter tuning
Model 4, like Model 1, does not apply any class imbalance technique and uses hyperparameter
tuning, but distinguishes itself by employing RFECV for feature selection. This approach investigates the
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effect of optimal feature selection on model performance, as shown in Table 5. Model 4 achieves high
accuracy, precision, and recall (accuracies from 0.89 to 0.93) and this is consistent with [27] that RFECV
yields greater accuracy in mental health predictions. While RFECV may reduce feature space and risk
information loss, its refined selection clearly boosts overall model effectiveness for mental health prediction.

Table 5. Model 4 performance with RFECV features and hyperparameter tuning

Performance metrics Classifiers Boosting classifiers
SVM DT LR K-NN  XGBoost AdaBoost

Accuracy 093 093 0.89 0.92 0.93 0.92
Precision 092 092 0.6 0.92 0.92 0.91
Recall 097 097 096 0.96 0.97 0.98
F1 Score 095 095 092 0.94 0.95 0.94
Roc Auc 091 091 0.6 0.90 0.91 0.90
Kappa 083 083 0.75 0.82 0.83 0.82
Geometric mean 091 091 085 0.90 0.91 0.89
Balanced Acc 091 091 0.6 0.90 0.91 0.90
Time (Sec) 0.03 0.004 0.007 0.02 0.06 0.25
PU (KB) 0 0 0 0 0 0

3.6. Model with SMOTE, RFECYV features, and hyperparameter tuning

Model 5 mirrors Model 2 by using SMOTE and hyperparameter tuning but further narrows its focus
to just three key RFECV-selected features. This streamlined approach highlights the impact of SMOTE
resampling and a compact feature set. As shown in Table 6, most classifiers improved, with SVM, DT,
K-NN, and XGBoost achieving up to 0.93 accuracy. While this method boosts performance over baselines,
the limited features and synthetic data may limit adaptability and generalizability.

Table 6. Model 5 performance with SMOTE, RFECV features and hyperparameter tuning

Performance metrics Classifiers Boosting classifiers
SVM DT LR K-NN  XGBoost  AdaBoost

Accuracy 093 093 0.89 0.92 0.93 0.92
Precision 0.92 0.92 0.86 0.92 0.92 0.91
Recall 0.97 0.97 0.96 0.96 0.97 0.98
F1 Score 095 0.95 0.92 0.94 0.95 0.94
Roc Auc 0.91 0.91 0.86 0.90 0.91 0.90
Kappa 0.83 0.83 0.75 0.82 0.83 0.82
Geometric mean 091 091 0.85 0.90 091 0.89
Balanced Acc 0.91 0.91 0.86 0.90 0.91 0.90
Time (Sec) 0.03 0.004 0.007 0.02 0.06 0.25
CPU (KB) 0 0 0 0 0 0

3.7. Model with tomek links, RFECV features and hyperparameter tuning

Model 6 in Table 7 adopts the same strategy as Model 3, using Tomek links for class imbalance,
hyperparameter tuning, and RFECV for feature selection. Its key distinction lies in the specific features
chosen. The combination of Tomek links and RFECV-selected features leads to notable performance gains,
with SVM and DT classifiers achieving 0.93 accuracy. Model 6 shows clear improvements across accuracy,
precision, and recall, highlighting the synergy of class imbalance handling and targeted feature selection.
Table 8 shows the results of the algorithms with Tomek links, RFECV features, and hyperparameter tuning.

Table 7. Model 6 performance with Tomek links, RFECV features, and hyperparameter tuning

Performance metrics Classifiers Boosting classifiers
SVM DT LR K-NN  XGBoost  AdaBoost
Accuracy 0.93 0.93 0.89 0.92 0.93 0.92
Precision 0.93 0.92 0.86 0.92 0.92 091
Recall 0.97 0.97 0.96 0.96 0.97 0.98
F1 Score 0.95 0.95 0.92 0.94 0.95 0.94
Roc Auc 0.91 0.91 0.86 0.90 091 0.90
Kappa 0.83 0.3 0.75 0.82 0.83 0.82
Geometric mean 0.91 0.91 0.85 0.90 0.91 0.89
Balanced Acc 0.91 0.91 0.86 0.90 091 0.90
Time (Sec) 0.04 0.003 0.007 0.02 0.05 0.25
CPU (KB) 0 0 0 0 0 0
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A comprehensive evaluation of various model configurations highlights the importance of tailored
machine learning techniques for mental health prediction. Approaches such as SMOTE, Tomek links, EFSA,
and RFECV all contributed to improved performance, with hyperparameter tuning further boosting results.
SVM and DT classifiers consistently achieved high accuracy, peaking at 93%. However, potential drawbacks
include information loss from feature selection and limitations of imbalance techniques. Cross-validation
proved essential for assessing model robustness and generalizability. XGBoost stood out as the top performer
across most metrics, while AdaBoost excelled in Model 4. SVM and DT also delivered strong results, nearly
matching XGBoost’s proficiency.

3.8. Ensemble learning

The results obtained when applying the three commonly used EL methods—bagging, boosting, and
stacking are presented in Table 8. Ensemble methods are machine learning techniques that combine the
predictions from multiple models to improve overall accuracy and performance. Bagging focuses on reducing
variance by aggregating results from several models trained on different data samples, while boosting aims to
reduce bias by sequentially correcting errors from previous models. Stacking further enhances performance
by training a final model to best combine the outputs of various individual models, providing a
comprehensive approach to predictive modelling.

3.8.1. Bagging

The bagging EL method was implemented using three diverse classifiers: DT, SVM, and K-NN.
Each classifier individually performed well, and their algorithmic diversity enhanced the ensemble’s
overall robustness and accuracy. As shown in Table 8, the bagging model achieved an accuracy of 0.927,
precision of 0.936, and recall of 0.955. The F1 score reached 0.945, and the ROC AUC was 0.913,
indicating strong discriminatory power. The kappa coefficient (0.835), geometric mean (0.912), and
balanced accuracy (0.913) further confirm model stability. With a training time of just 0.151 seconds and
low memory usage, this bagging-SMOTE approach proves both effective and computationally efficient for
mental disorder prediction.

3.8.2. Boosting

The boosting EL method was implemented using DT and AdaBoost, resulting in outstanding
performance that surpassed other classifier combinations. DT served as a strong base model, while AdaBoost
iteratively corrected its errors, leading to enhanced results AdaBoost achieved 92% accuracy and DT 93%.
This approach leveraged both model diversity and boosting synergy for greater resilience. The method was
tested with both SMOTE and Tomek links for class imbalance, each yielding distinct results while the ROC
curve remained consistently high (0.91). Overall, the boosting ensemble method demonstrated superior
precision, recall, and robust discriminatory power for mental disorder prediction.

3.8.3. Stacking

The stacking EL method integrates a range of high-performing base classifiers-DT, SVM, K-NN,
and XGBoost-each contributing unique algorithmic perspectives and strengths. By combining their
predictions through a meta-learner, the stacking ensemble effectively leverages this diversity to enhance
overall predictive performance. Results, detailed in Table 8, highlight the method’s ability to capitalize on the
strengths of each classifier. Achieving a robust ROC AUC of 91%, the stacking approach demonstrates
strong, reliable model performance, comparable to the Boosting EL method.

When comparing the EL methods presented above, distinct patterns in their performance are
observed with each EL method demonstrating its unique advantages. As observed in Table 8, the
performance metrics of different EL methods (SMOTE Bagging, SMOTE Boosting, SMOTE Stacking, and
Tomek links Boosting) are displayed. Each method employs various classifiers and techniques to combine
their predictions, aiming to enhance overall model performance.

Based on the presented metrics, SMOTE Bagging, SMOTE Boosting, and SMOTE Stacking all
yield the same accuracy, precision, recall, F1 score, ROC AUC, geometric mean, and balanced accuracy
values of 0.91. Tomek links Boosting lags slightly behind with an accuracy of 0.93, precision of 0.92, recall
of 0.97, F1 score of 0.95, ROC AUC of 0.91, and lower kappa of 0.83, as shown in Table 8. Considering the
results of models 1 to 5, where it was observed that boosting classifiers tended to perform better across
various models and datasets, it can be inferred that SMOTE Boosting might be the most effective EL method
among the four. This is because boosting methods excel in correcting errors in base models and using their
collective strengths. The SMOTE Boosting method achieved comparable metrics with other methods, such as
Bagging and Stacking, requiring minimal training time (0.01 seconds) and negligible memory usage. Our
findings resonate with [9], who concluded that ensemble-learning methods boost accuracy in mental health
predictions.
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While SMOTE Boosting demonstrates strong overall performance across various metrics, there are
situations where Tomek links Boosting might be preferred. In the real world, the dataset is not always
balanced. If the dataset is particularly sensitive to class imbalance and focuses on accurately predicting the
minority class (e.g., mental health), Tomek links Boosting might be more suitable. It showed the highest
recall (0.97) among the compared EL methods, indicating its effectiveness in correctly identifying instances
of the minority class.

Table 8. Ensemble learning results

Performance metrics Ensemble learning
SMOTE Bagging  SMOTE Boosting SMOTE Stacking  Tomek Links Boosting

Accuracy 0.93 0.93 0.93 0.93
Precision 0.94 0.94 0.94 0.92
Recall 0.96 0.96 0.96 0.97
F1 Score 0.95 0.95 0.95 0.95
Roc AUC 0.91 0.91 0.91 0.91
Kappa 0.84 0.84 0.84 0.83
Geometric mean 0.91 0.91 0.91 0.91
Balanced Acc 0.91 0.91 0.91 0.91
Time (Sec) 0.15 0.01 0.78 0.02

CPU (KB) 0 0 0 0

3.9. Confusion matrix for the best model

When it is essential to avoid missing a true positive-for instance, in situations like healthcare or
safety-sensitive environments-the high recall score achieved by Tomek Links Boosting is particularly
advantageous, as shown in Table 8. This approach effectively identifies the majority of true cases within the
minority class. Figure 3 presents the corresponding confusion matrix, detailing the model’s predictions:
64,891 true positives (correctly identified mental health crises, 29,678 true negatives, 987 false positives, and
only 111 false negatives. Minimizing false negatives is essential, as missing individuals needing assistance
can have serious consequences. While Tomek Links Boosting may have slightly lower accuracy and
precision than other methods, its balanced accuracy and geometric mean are comparable, indicating a strong
trade-off between class representation and overall performance. Removing near-neighbor instances via
Tomek links sharpens decision boundaries, potentially improving generalization and reducing overfitting,
especially with complex or noisy data. Overall, the ensemble methods evaluated demonstrate robust
predictive power and practical efficiency for mental disorder prediction. While SMOTE Boosting remains a
strong option, this study favours Tomek Links Boosting due to its exceptional 97% recall, aligning with the
critical goal of accurately identifying those needing mental health intervention and support.

G000
a1 29678 987 [=nee

40000

30000

20060
- 111

W00

o 1
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Figure 3. Confusion matrix for Tomek links boosting ensemble learning

4. CONCLUSION

This study provides a comprehensive comparison of ML techniques for predicting mental health
crises using a large, longitudinal dataset. Ensemble methods, particularly XGBoost and TIBE, demonstrated
superior performance in accuracy, recall, and balanced accuracy. Key risk factors identified include prior
hospitalizations, medication adherence, and recent behavioral indicators. These findings suggest that
integrating machine learning models into mental healthcare could significantly enhance early identification
and intervention for individuals at risk.
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