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 Android malware is an application that targets Android devices to steal 

crucial data, including money or confidential information from Android 

users. Recent years have seen a surge in research on Android malware, as its 

types continue to evolve, and cybersecurity requires periodic improvements. 

This research focuses on detecting Android malware attack patterns using 

deep learning and convolutional neural network (CNN) models, which 

classify and detect malware attack patterns on Android devices into two 

categories: malware and non-malware. This research contributes to 

understanding how effective the CNN models are by comparing the ratio of 

data used with several epochs. We effectively use CNN models to detect 

malware attack patterns. The results show that the deep learning method 

with the CNN model can manage unstructured data. The research results 

indicate that the CNN model demonstrates a minimal error rate during 

evaluation. The comparison of accuracy, precision, recall, F1 Score, and area 

under the curve (AUC) values demonstrates the recognition of malware 

attack patterns, reaching an average of 92% accuracy in data testing. This 

provides a holistic understanding of the model's performance and its 

practical utility in detecting Android malware. 
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1. INTRODUCTION 

Android malware specifically targets devices running the Android operating system [1]. They can 

take various forms, including viruses, trojans, adware [2], and spyware [3]. Android malware can infect 

devices in various ways [4], such as by downloading malicious applications from third-party applications, 

visiting compromised websites, or exploiting vulnerabilities in the device's operating system. Once installed, 

malware can steal personal information [5], send unwanted SMS messages [6], make unauthorized phone 

calls [7], or perform other malicious actions [8]. 

The types of Android malware continue to grow and develop [9]–[12], with many new families and 

variants emerging. Cybercriminals are increasingly focusing on mobile malware, with many new families 

and variants emerging [13]. We expect this trend to persist in the future as cybercriminals increasingly target 

mobile devices. One method that Android malware uses is keylogging [14], [15], where it records every 

keystroke made on the device, including passwords, and other sensitive information. Another method is 

scraping [14], where malware collects information from various sources such as device contacts, calendars, 

and call logs, as well as from applications installed on the device. Another method is data exfiltration [16], 

[17], where malware transmits the gathered information to a remote server for analysis and malicious use [15]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recent years have seen the development of deep learning methods for classifying malware attack 

patterns [18]–[24]. In several of these studies, malware detection on Android using deep learning methods 

has become a research hotspot [12], [13]; however, it lacks detail and comprehensiveness so this research 

continues to be developed nowadays [20]. The increasing threat of malware in cyberspace has made malware 

detection using deep learning methods a significant research field in recent years. A major challenge in 

malware detection is the ability of malware to evolve quickly [25], making it difficult for traditional detection 

methods to keep up. Deep learning methods have proven to be very effective in detecting malware [18], [26] 

due to their ability to automatically learn features from large data and adapt to emerging threats. 

One of the main problems in deep learning-based malware detection is the need for large and 

diverse datasets to train models effectively. This can be a challenge, especially when dealing with the ever-

evolving nature of malware, which can lead to a lack of relevant data for training. Additionally, the 

complexity of malware can make it difficult to identify the most effective features to extract from data, which 

can impact model performance. Therefore, this paper applies deep learning methods using convolutional 

neural network (CNN) to detect Android malware attack patterns. 

This research will demonstrate the practical application of CNN to classify Android applications 

into malware and non-malware. This showcases the capability of CNN to effectively handle the problem of 

Android malware detection, which involves unstructured data. A key contribution of the study is the analysis 

of how different training data ratios and epochs impact the CNN model's effectiveness. This provides 

valuable insights into optimizing CNN performance for malware detection. The study highlights the ability of 

CNNs to process unstructured data (e.g., data extracted from Android applications) and identify complex 

patterns that distinguish malware from non-malware, emphasizing the suitability of deep learning for 

cybersecurity tasks. Tackles the issue of insufficient and imbalanced malware datasets by employing 

techniques of data augmentation, by proposing a new methodology for generating a diverse and 

representative dataset of Android malware samples. This contribution aids in mitigating the dataset 

limitations faced by other malware detection systems and measuring uses a detailed evaluation framework, 

including metrics such as accuracy, precision, recall, F1 score, and area under the curve (AUC). 

 

 

2. METHOD 

2.1.  State of the art 

Android malware detection with deep learning, has received important attention in recent years 

[27]–[29] due to the increasing sophistication of malware attacks on Android devices. Deep learning 

algorithms, especially those, which are based on recurrent neural networks (RNN), and CNN, have been 

successfully applied to detect malware in Android applications [30]. A combination of RNN and CNN 

harnesses the power of machine learning to analyze complex patterns in Android app behaviour, such as 

application programming interface (API) calls and system interactions, to identify malicious software. 

One of the deep learning methods CNN is currently widely used in the fields of classification and 

pattern recognition, due to CNN's ability to perform feature extraction and classification in one network so 

that it can be implemented for any case. The approach using the CNN method to detect Android malware is 

very effective in analyzing structured data [31], such as API calls and system interactions, which can be 

represented as a series of vectors [24]. This method involves training a CNN model on a dataset of labelled 

Android apps, where the labels indicate whether the app is malicious or non-malicious. The trained model 

can then be used to classify new, unseen applications as malicious or non-malicious based on their behaviour. 

Deep learning models have achieved high accuracy in detecting malware [32], [33], especially when 

compared to machine learning methods [34]. Deep learning models can process large amounts of data 

quickly, making them suitable for real-time malware detection on Android devices [34], [35]. The quality of 

training data is critical to the effectiveness of deep learning models. High-quality data with accurate labels is 

critical to achieving good performance. Integrating deep learning-based malware detection with existing 

security systems can improve the overall security of Android devices [34]. 

Based on research that has been conducted, Android malware detection using deep learning methods 

has shown promising results in detecting malware on Android devices. The use of CNN is effective in 

analyzing complex patterns in Android application behaviour [36]. The deep learning method in classifying 

Android malware involves the use of deep learning models to identify and separate malware applications 

from correct applications [37]–[39]. The static and dynamic features of malware applications and non-

malware applications were combined, and a deep learning model with long short-term memory (LSTM) 

architecture was developed to identify malware [40]. In this research using the deep learning neural network 

method [38], the results show that the model developed has an accuracy of 99% precision and 99.4% recall. 

It means that deep learning methods is the best solution for recognizing Android malware patterns.  

The Mapping research related to Android malware classification by the VOS Viewer application is 

shown in Figure 1. In Figure 1 the metadata is taken from dimensions so that 7 clusters are formed within the 
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mapping of research related to deep learning topics. In these 7 clusters, the highest researched from 2019 to 

2023 is research related to malware and Android, which is shown in the blue and light blue clusters, 

meanwhile, Android malware detection is in the red cluster, and one of the least research focuses is the use of 

deep learning methods in Android malware classification. This means the research of the CNN method in 

deep learning is still in demand of research until this year [41], [42]. 

 

 

 
 

Figure 1. Network visualization android malware classification 

 

 

2.2.  Research framework 

At this phase, the deep learning method uses a simple CNN algorithm, which will be applied to 

image processing. This research focuses on analyzing attack patterns that occur on Android devices by 

grouping the malware variants into Variant X (malware), and Variant Y (non-malware), then applying the 

deep learning method using the CNN algorithm to detect malware attack patterns. The steps of this research 

are shown in Figure 2. 

 

 

 
 

Figure 2. Research steps 

 

 

2.2.1. Data preparation 

In this phase, the data is collected in the form of image files which contain malware and benign 

attack patterns detected on Android devices, the dataset has been converted from a binary file into a grayscale 

image 2D as seen in Figure 3. The binary file is converted to a grayscale image, using a hexadecimal 

representation of the binary content, and then the file is converted into an image in PNG format. The dataset 

for malware attack patterns was obtained via Google Dataset with a total of 6,012 data samples with 

dimensions of 256×256 pixels. The data was divided into 3,000 sample data for malware and 3,012 sample 

data for non-malware. 
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Figure 3. Step binary file to convert image 

 

 

2.2.2. Data preprocessing 

Preparing the data by importing the dataset folder on the storage drive, and dividing the data based 

on the ratio of training and testing data with comparison 80:20. Then data resizing to 128×128 pixels. The 

last data saved will be augmented to increase the number of datasets and provide a wide variety of Android 

malware patterns. Data augmentation is a technique to increase the variety of training data by modifying the 

original images so that the model can learn better and improve generalization. The augmentation in data 

preprocessing steps can be shown in Figure 4. 

 

 

 
 

Figure 4. Augmentation in data preprocessing 

 

 

The augmentation data using an image data generator for each parameter step by step in Figure 4 

can be explained in detail as follows. 
‒ Rescale=1.0/255: Used for pixel normalization. The initial image pixel values are 0-255 (standard for 

RGB images). With rescale=1.0/255, the pixel values are converted to the range 0-1, which often 
makes model training more stable and converges quickly. 

‒ Rotation_range=40: Sets a random rotation of the image within a certain degree range. In this case, the 
image will be rotated randomly between -40 and +40 degrees. 

‒ Width_shift_range=0.2: Performs a horizontal shift on the image. It means the image can be shifted 
horizontally 20% from the original image width. 

‒ Height_shift_range=0.2: Performs a vertical shift on the image. The image can be shifted vertically 
20% from the original image height. 

‒ Shear_range=0.2: Provides a shearing transformation on the image. Shearing shifts one part of the 
image in a certain direction, producing a skewed effect. 0.2 means the image will be changed 
randomly within a certain shearing angle. 

‒ Zoom_range=0.2: Sets a random zoom on the image, zooming in or out of the image. 0.2 means the 
image can be zoomed in or out up to 20% of its original size. 

‒ Horizontal_flip=True: Performs a horizontal flip on the image randomly, so the image can be mirrored 
horizontally. Useful for making the model unbiased to the orientation of the image. 

‒ Fill_mode='nearest': Determines how to fill empty areas that may appear due to rotation, shifting, or 
zooming. 

 

2.2.3. Architecture building 

In the model selection stage, namely deep learning by adding convolutional layers, pooling layers, 

fully-connected layers, and dropout layers in the CNN model architecture used. So that the data will form a 

CNN classification model based on the specified data labels. The input data will be mapped into 2 (two) 

groups with the dataset divided into malware and non-malware labels. Next, the data that has been formed 

will be added to a convolution layer which is the core network for finding patterns of malware attacks, so that 

a one-dimensional vector will be formed. Next, the data will enter the pooling layer which is used to reduce 

the dimensions of the feature maps produced by the previous convolutional layer. So, it will reduce the 
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occurrence of overfitting. Then the next data will be forwarded to the fully connected layer to produce fully 

classified data output. The simple model of CNN used in this research is shown in Figure 5. 

 

 

 
 

Figure 5. Simple architecture of CNN 

 

 

The start step is adding a convolutional layer from the input shape with 32 filters of size 3×3. 

Rectified linear unit (ReLu) activation is used to add non-linearity. Input shape is used only in the first layer 

to determine the shape of the model input. A pooling layer that reduces the dimensionality of the features by 

taking the maximum value from a 2×2 area in the previous layer's output, helps reduce computational 

complexity. Next, add flattening to convert the 2D output of the previous layer into one dimension. Then add 

a fully-connected layer with 128 units and activate ReLu. This layer captures the pattern of features that have 

been extracted by the convolutional layer. Adding dropout with a probability of 50% is used to prevent 

overfitting by reducing the model's dependence on certain neurons. This function returns a simple CNN 

model that can be used for image classification. The step of the simple CNN model applied is shown in 

Figure 6. 

 

 

 
 

Figure 6. CNN models applied 

 

 

2.2.4. Training and testing 

In this phase, data will separate in 80:20 which contains 4,809 data testing and 1,203 data training 

belonging to 2 classes of malware and non-malware patterns. In the training phase is used train generator. 

Training data generators that provide image data in batches, typically use “ImageDataGenerator” from 

augmentation. The training phase uses the model.fit () function, which trains the model and records the loss 

and accuracy values, and then evaluation is carried out using the validation generator function on the test data 

to see the actual model performance.  

 

2.2.5. Fine tuning 

Fine-tuning is adjusting a pre-trained model for optimal performance on a new task or dataset. It is a 

subset of transfer learning techniques, where a model learned on a large dataset is reused for a different task 

with a smaller or specialized dataset. The stages in fine-tuning carried out in this study are starting with the 

pre-trained model, and then freezing the Initial layer. The initial layers of the pre-trained model often learn 
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basic features such as edges, corners, and textures that are generally applicable to many types of images. 

Then adjust the final layer, train with a lower learning rate and evaluate the results. During fine-tuning, the 

model is trained with a smaller learning rate to make subtle adjustments to the parameters without destroying 

previously learned features. The fine-tuning step in this research is shown in Figure 7. 
 

 

 
 

Figure 7. Fine tuning step 
 

 

2.2.6. Evaluation 

In this evaluation stage, the performance of the CNN classifier is measured by using a confusion 

matrix as a measurement metric. Measurement metrics in deep learning are used to assess a model's 

performance throughout training and evaluation. They provide insights into how effectively the model learns 

and adapts to new data. In this stage, the values of accuracy, precision, recall, and F1 score will be measured 

by calculating the true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The 

measurement metrics from evaluation stage can be found in (1) to (4). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 𝑥 
(𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 
 (4) 

 

 

3. RESULTS AND DISCUSSION 

The results and analysis of the data will be discussed in this part. The CNN algorithm has been 

applied to classify malware (X) and non-malware (Y) variants. After implementing the algorithm, the system 

that has been created will be tested. Testing on the system aims to measure the performance of the model 

implemented on the dataset. In the testing stages, a different number of epochs will also be used when 

training the previously designed model. 

The number of epochs used is 10, 30, 50, 70 and 100. The simple CNN model applies additional 

layers to deep learning by providing several basic layers, namely convolutional layers (conv), pooling layers 

(pool), fully connected layers and dropout layers using ReLu. In the processing data stage, the augmented 

dataset was implemented. The data transformed to 128×128 from 256×256 pixels. The next stage is calling 

the model function, i.e.: Simple CNN by applying the neural network cross-entropy loss function and calling 

the Adam optimizer function. Then the next stage is to carry out training data by entering the epoch value 

several times as a comparison for better accuracy. In the validation stage of the testing results, several 

functions are used to determine accuracy values. Several functions are used, including to display comparisons 

of total loss, accuracy, confusion matrix, precision values, accuracy, recall, F1 score, and receiver operating 

characteristic (ROC)-AUC. 

The accuracy of the predictions in relation to the total testing data was assessed in this study using 

the accuracy and loss variables, as indicated in Table 1. While the recall is generated to test the CNN model's 

error in identifying patterns other than malware, precision is generated to measure the CNN model's mistake 

in predicting the proper object. It is anticipated that the model in this study will have greater recall and 

accuracy values than precision values. Google Collabs software was used as a tool to analyze previously 

obtained datasets which used Python programming language, connected to the runtime with the T4 GPU for 

running the process quickly and setting the RAM using NVIDIA graphics. After running the process with the 

simple CNN model, evaluate the model by measuring validation loss and accuracy in any epoch as shown in 

Table 1. 
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Table 1. Result and comparison between validation loss and validation accuracy 
Total Epoch Validation Loss Validation Accuracy 

10 

 
0.5306247472763062 

 
0.864505410194397 

30 

 
0.25273627042770386 

 
0.9268495440483093 

50 

 
0.2981289029121399 

 
0.916043221950531 

70 

 
0.2427741140127182 

 
0.9318370819091797 

100 

 
0.26761937141418457 

 
0.9285120368003845 



Comput Sci Inf Technol  ISSN: 2722-3221  

 

Detection of android malware with deep learning method using convolutional neural … (Reza Maulana) 

75 

From Table 1, the validation loss and accuracy results show the different values within any epochs 

(10, 30, 50, 70, and 100), with the best validation start in 30 epochs with a validation loss value of 0.2 and an 

accuracy score of 0.93. In this case, the tested dataset has no underfitting or overfitting so, it can be used for 

better system deployment. The result showed that the simple CNN model can still detect malware attack 

patterns through data classification for malware and non-malware classes. The comparison of the confusion 

matrix and ROC graph in any epoch is shown in Table 2. 

 

 

Table 2. Result of confusion matrix and ROC 
Total Epoch Confusion Matrix ROC 

10 

  
30 

  
50 

  
70 

  
100 
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From Table 2, The confusion matrix shows scores TP, FN, TN, and FP in malware prediction has 

good balance in classification performance for benign and malware samples, with the error rates distributed 

proportionally. The high recall suggests that the model prioritizes detecting malware over avoiding false 

positives. This is typically ideal for malware detection systems. For the comparison of accuration score in 

any epoch can be seen in Figure 8. 

From Figure 8, Accuracy score starts at 86.45% with 10 epochs and increases to 93.18% at 70 

epochs, at 100 epochs accuracy slightly drops to 92.85%, indicating potential overfitting beyond 70 epochs. 

Precision remains high across all epochs, ranging from 95.67% (30 epochs) to 99.33% (100 epochs). 

Precision improves significantly after 30 epochs and reaches its highest value at 100 epochs. Recall improves 

from 96.83% (10 epochs) to 99.5% (30 epochs), peaks, and then stabilizes at 98.33% (70 epochs). This 

suggests the model performs well in identifying all true positives consistently as training progresses. The  

F1 score follows a similar pattern as accuracy. It increases significantly, peaking at 98.33% (70 epochs). A 

slight improvement occurs at 100 epochs (98.74%), driven by precision improvements. ROC-AUC values are 

consistently very high (above 99.65%) across all epochs, indicating the model's strong ability to distinguish 

between classes. The highest value (99.8%) is observed at 30 epochs, with marginal variations thereafter. 

 

 

 
 

 

Figure 8. Comparison of accuration score 

 

4. CONCLUSION 

The deep learning method applied with the simple CNN model to detect Android malware patterns 

on Android devices is highly recommended with unstructured data. The pattern of malware attacks is 

classified with an average accuracy rate of 92%, the error percentage only reaches less than 10%. The CNN 

model applied is effective in classifying and detecting malware attack patterns. This establishes the 

effectiveness of the CNN model in detecting Android malware attack patterns and demonstrates its potential 

as a reliable malware detection method. Malware patterns on Android devices can be determined by adding 

other methods after the classification results are obtained using the simple CNN architecture. The CNN 

architecture with the correct composition of additional convolutional layers, pooling layers, fully connected 

layers, and ReLu will produce good accuracy. The research provides a robust CNN-based framework for 

detecting Android malware. It contributes to understanding the effectiveness of CNN models in handling 

unstructured data and optimizing performance through data ratio and epoch analysis. Additionally, it offers a 

comprehensive evaluation framework and achieves high detection accuracy, making it a valuable 

contribution to Android malware detection. By addressing the evolving nature of Android malware, this 

research provides a scalable and robust framework for periodic updates to cybersecurity tools. Detection of 

Android malware patterns can also be determined by adding other deep learning models to obtain better 

accuracy results. The classification results can be used as benchmark data in building system defences in 

cyber security, ensuring their relevance in combating emerging threats. 
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