Computer Science and Information Technologies

Vol. 6, No. 1, March 2025, pp. 68~79

ISSN: 2722-3221, DOI: 10.11591/csit.v6il.pp68-79 a 68

Detection of android malware with deep learning method using
convolutional neural network model

Reza Maulana?, Deris Stiawan!, Rahmat Budiarto?
!Department of Computer Science, Sriwijaya University, Palembang, Indonesia
2College of Computing and Information, Al-Baha University, Al Baha, Saudi Arabia

Article Info

ABSTRACT

Article history:

Received Nov 19, 2024
Revised Feb 6, 2025
Accepted Feb 18, 2025

Keywords:

Android malware
Classification

Convolutional neural network
Deep learning

Pattern recognition

Android malware is an application that targets Android devices to steal
crucial data, including money or confidential information from Android
users. Recent years have seen a surge in research on Android malware, as its
types continue to evolve, and cybersecurity requires periodic improvements.
This research focuses on detecting Android malware attack patterns using
deep learning and convolutional neural network (CNN) models, which
classify and detect malware attack patterns on Android devices into two
categories: malware and non-malware. This research contributes to
understanding how effective the CNN models are by comparing the ratio of
data used with several epochs. We effectively use CNN models to detect
malware attack patterns. The results show that the deep learning method
with the CNN model can manage unstructured data. The research results
indicate that the CNN model demonstrates a minimal error rate during
evaluation. The comparison of accuracy, precision, recall, F1 Score, and area
under the curve (AUC) values demonstrates the recognition of malware
attack patterns, reaching an average of 92% accuracy in data testing. This
provides a holistic understanding of the model's performance and its
practical utility in detecting Android malware.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Deris Stiawan

Department of Computer Science, Sriwijaya University
Srijaya Negara Street, Palembang 30139, Indonesia

Email: deris@unsri.ac.id

1. INTRODUCTION

Android malware specifically targets devices running the Android operating system [1]. They can
take various forms, including viruses, trojans, adware [2], and spyware [3]. Android malware can infect
devices in various ways [4], such as by downloading malicious applications from third-party applications,
visiting compromised websites, or exploiting vulnerabilities in the device's operating system. Once installed,
malware can steal personal information [5], send unwanted SMS messages [6], make unauthorized phone
calls [7], or perform other malicious actions [8].

The types of Android malware continue to grow and develop [9]-[12], with many new families and
variants emerging. Cybercriminals are increasingly focusing on mobile malware, with many new families
and variants emerging [13]. We expect this trend to persist in the future as cybercriminals increasingly target
mobile devices. One method that Android malware uses is keylogging [14], [15], where it records every
keystroke made on the device, including passwords, and other sensitive information. Another method is
scraping [14], where malware collects information from various sources such as device contacts, calendars,
and call logs, as well as from applications installed on the device. Another method is data exfiltration [16],
[17], where malware transmits the gathered information to a remote server for analysis and malicious use [15].

Journal homepage: http://iaesprime.com/index.php/csit

https://creativecommons.org/licenses/by-sa/4.0/
mailto:deris@unsri.ac.id

Comput Sci Inf Technol ISSN: 2722-3221 a 69

Recent years have seen the development of deep learning methods for classifying malware attack
patterns [18]-[24]. In several of these studies, malware detection on Android using deep learning methods
has become a research hotspot [12], [13]; however, it lacks detail and comprehensiveness so this research
continues to be developed nowadays [20]. The increasing threat of malware in cyberspace has made malware
detection using deep learning methods a significant research field in recent years. A major challenge in
malware detection is the ability of malware to evolve quickly [25], making it difficult for traditional detection
methods to keep up. Deep learning methods have proven to be very effective in detecting malware [18], [26]
due to their ability to automatically learn features from large data and adapt to emerging threats.

One of the main problems in deep learning-based malware detection is the need for large and
diverse datasets to train models effectively. This can be a challenge, especially when dealing with the ever-
evolving nature of malware, which can lead to a lack of relevant data for training. Additionally, the
complexity of malware can make it difficult to identify the most effective features to extract from data, which
can impact model performance. Therefore, this paper applies deep learning methods using convolutional
neural network (CNN) to detect Android malware attack patterns.

This research will demonstrate the practical application of CNN to classify Android applications
into malware and non-malware. This showcases the capability of CNN to effectively handle the problem of
Android malware detection, which involves unstructured data. A key contribution of the study is the analysis
of how different training data ratios and epochs impact the CNN model's effectiveness. This provides
valuable insights into optimizing CNN performance for malware detection. The study highlights the ability of
CNNs to process unstructured data (e.g., data extracted from Android applications) and identify complex
patterns that distinguish malware from non-malware, emphasizing the suitability of deep learning for
cybersecurity tasks. Tackles the issue of insufficient and imbalanced malware datasets by employing
techniques of data augmentation, by proposing a new methodology for generating a diverse and
representative dataset of Android malware samples. This contribution aids in mitigating the dataset
limitations faced by other malware detection systems and measuring uses a detailed evaluation framework,
including metrics such as accuracy, precision, recall, F1 score, and area under the curve (AUC).

2. METHOD
2.1. State of the art

Android malware detection with deep learning, has received important attention in recent years
[27]-[29] due to the increasing sophistication of malware attacks on Android devices. Deep learning
algorithms, especially those, which are based on recurrent neural networks (RNN), and CNN, have been
successfully applied to detect malware in Android applications [30]. A combination of RNN and CNN
harnesses the power of machine learning to analyze complex patterns in Android app behaviour, such as
application programming interface (API) calls and system interactions, to identify malicious software.

One of the deep learning methods CNN is currently widely used in the fields of classification and
pattern recognition, due to CNN's ability to perform feature extraction and classification in one network so
that it can be implemented for any case. The approach using the CNN method to detect Android malware is
very effective in analyzing structured data [31], such as API calls and system interactions, which can be
represented as a series of vectors [24]. This method involves training a CNN model on a dataset of labelled
Android apps, where the labels indicate whether the app is malicious or non-malicious. The trained model
can then be used to classify new, unseen applications as malicious or non-malicious based on their behaviour.

Deep learning models have achieved high accuracy in detecting malware [32], [33], especially when
compared to machine learning methods [34]. Deep learning models can process large amounts of data
quickly, making them suitable for real-time malware detection on Android devices [34], [35]. The quality of
training data is critical to the effectiveness of deep learning models. High-quality data with accurate labels is
critical to achieving good performance. Integrating deep learning-based malware detection with existing
security systems can improve the overall security of Android devices [34].

Based on research that has been conducted, Android malware detection using deep learning methods
has shown promising results in detecting malware on Android devices. The use of CNN is effective in
analyzing complex patterns in Android application behaviour [36]. The deep learning method in classifying
Android malware involves the use of deep learning models to identify and separate malware applications
from correct applications [37]-[39]. The static and dynamic features of malware applications and non-
malware applications were combined, and a deep learning model with long short-term memory (LSTM)
architecture was developed to identify malware [40]. In this research using the deep learning neural network
method [38], the results show that the model developed has an accuracy of 99% precision and 99.4% recall.
It means that deep learning methods is the best solution for recognizing Android malware patterns.

The Mapping research related to Android malware classification by the VOS Viewer application is
shown in Figure 1. In Figure 1 the metadata is taken from dimensions so that 7 clusters are formed within the

Detection of android malware with deep learning method using convolutional neural ... (Reza Maulana)

70 a ISSN: 2722-3221

mapping of research related to deep learning topics. In these 7 clusters, the highest researched from 2019 to
2023 is research related to malware and Android, which is shown in the blue and light blue clusters,
meanwhile, Android malware detection is in the red cluster, and one of the least research focuses is the use of
deep learning methods in Android malware classification. This means the research of the CNN method in
deep learning is still in demand of research until this year [41], [42].

androld malware dectection
malicious software

detection techniques

detection
android malwage classification

e
end-o-end Istm mi re

& :
- P " android

system calls

transfeclearning

bytecode
v SU#U“
S

an ‘i
adagtive deaifa\rn'ng networktraffic. ©%
informagi@fecurity TN
android m*r’ e detection'®®
-

cybersecurity

malwaredetéction
cenyelutionalipeural networks “4

analysis android malicious applications
neural getwork android security

fuzzylogic

o -
androi@talware
apl cillgraph (com)

apills
%% VOSviewer

Figure 1. Network visualization android malware classification

2.2. Research framework

At this phase, the deep learning method uses a simple CNN algorithm, which will be applied to
image processing. This research focuses on analyzing attack patterns that occur on Android devices by
grouping the malware variants into Variant X (malware), and Variant Y (non-malware), then applying the
deep learning method using the CNN algorithm to detect malware attack patterns. The steps of this research
are shown in Figure 2.

N Data | ™| Architecture |\ E—
L/ | Preparation 1/ Building S & 9
.f Fine Tuning Evaluating

Figure 2. Research steps

2.2.1. Data preparation

In this phase, the data is collected in the form of image files which contain malware and benign
attack patterns detected on Android devices, the dataset has been converted from a binary file into a grayscale
image 2D as seen in Figure 3. The binary file is converted to a grayscale image, using a hexadecimal
representation of the binary content, and then the file is converted into an image in PNG format. The dataset
for malware attack patterns was obtained via Google Dataset with a total of 6,012 data samples with
dimensions of 256x256 pixels. The data was divided into 3,000 sample data for malware and 3,012 sample
data for non-malware.

Comput Sci Inf Technol, Vol. 6, No. 1, March 2025: 68-79

Comput Sci Inf Technol ISSN: 2722-3221 a 71

Input Binary Files
(Mahvare/Benign} 8 Bit Vector to Image
H Pixel (256 x 256) H Grayscale Image 2D

01110111010100...

.PNG

Figure 3. Step binary file to convert image

2.2.2. Data preprocessing

Preparing the data by importing the dataset folder on the storage drive, and dividing the data based
on the ratio of training and testing data with comparison 80:20. Then data resizing to 128x128 pixels. The
last data saved will be augmented to increase the number of datasets and provide a wide variety of Android
malware patterns. Data augmentation is a technique to increase the variety of training data by modifying the
original images so that the model can learn better and improve generalization. The augmentation in data
preprocessing steps can be shown in Figure 4.

Rescales N Rotation Range .| TWidth Shift Range .| Height Shift Range
(1.0/235) > {40) > (0.2) > (0.2
Y
Fill Mode = Nearest | Horizontal Flip = True [Z““’(’; E;“‘-"’e < She‘zg E‘;’“ge

Figure 4. Augmentation in data preprocessing

The augmentation data using an image data generator for each parameter step by step in Figure 4
can be explained in detail as follows.

- Rescale=1.0/255: Used for pixel normalization. The initial image pixel values are 0-255 (standard for
RGB images). With rescale=1.0/255, the pixel values are converted to the range 0-1, which often
makes model training more stable and converges quickly.

- Rotation_range=40: Sets a random rotation of the image within a certain degree range. In this case, the
image will be rotated randomly between -40 and +40 degrees.

- Width_shift_range=0.2: Performs a horizontal shift on the image. It means the image can be shifted
horizontally 20% from the original image width.

- Height_shift_range=0.2: Performs a vertical shift on the image. The image can be shifted vertically
20% from the original image height.

- Shear_range=0.2: Provides a shearing transformation on the image. Shearing shifts one part of the
image in a certain direction, producing a skewed effect. 0.2 means the image will be changed
randomly within a certain shearing angle.

- Zoom_range=0.2: Sets a random zoom on the image, zooming in or out of the image. 0.2 means the
image can be zoomed in or out up to 20% of its original size.

- Horizontal_flip=True: Performs a horizontal flip on the image randomly, so the image can be mirrored
horizontally. Useful for making the model unbiased to the orientation of the image.

- Fill_mode='"nearest": Determines how to fill empty areas that may appear due to rotation, shifting, or
zooming.

2.2.3. Architecture building

In the model selection stage, namely deep learning by adding convolutional layers, pooling layers,
fully-connected layers, and dropout layers in the CNN model architecture used. So that the data will form a
CNN classification model based on the specified data labels. The input data will be mapped into 2 (two)
groups with the dataset divided into malware and non-malware labels. Next, the data that has been formed
will be added to a convolution layer which is the core network for finding patterns of malware attacks, so that
a one-dimensional vector will be formed. Next, the data will enter the pooling layer which is used to reduce
the dimensions of the feature maps produced by the previous convolutional layer. So, it will reduce the

Detection of android malware with deep learning method using convolutional neural ... (Reza Maulana)

72 a ISSN: 2722-3221

occurrence of overfitting. Then the next data will be forwarded to the fully connected layer to produce fully
classified data output. The simple model of CNN used in this research is shown in Figure 5.

Convolution
Layer Fully 70ulput

Input T Pooling Connected .---="=""~+~
Tte--. Layer -

Malware

Data Image
Benign

Feature Extraction Classification .-~

Figure 5. Simple architecture of CNN

The start step is adding a convolutional layer from the input shape with 32 filters of size 3x3.
Rectified linear unit (ReLu) activation is used to add non-linearity. Input shape is used only in the first layer
to determine the shape of the model input. A pooling layer that reduces the dimensionality of the features by
taking the maximum value from a 2x2 area in the previous layer's output, helps reduce computational
complexity. Next, add flattening to convert the 2D output of the previous layer into one dimension. Then add
a fully-connected layer with 128 units and activate ReLu. This layer captures the pattern of features that have
been extracted by the convolutional layer. Adding dropout with a probability of 50% is used to prevent
overfitting by reducing the model's dependence on certain neurons. This function returns a simple CNN
model that can be used for image classification. The step of the simple CNN model applied is shown in
Figure 6.

def build simple cnn(input_shape=(64, 64, 3), num_classes=1)
model = Sequential([
Conv2D(32, (3, 3), activation="relu', input_shape=input_shape),
MaxPooling2D(pool size=(2, 2)),

Conv2D(64, (3, 3), activation="relu'},
MaxPooling2D(pool size=(2, 2)),

Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(pool size=(2, 2)),

Flatten(),

Dense(128, activation='relu'),

Dropout(@.5),

Dense(num_classes, activation="sigmoid' if num_classes == 1 else 'softmax')

D

return model

Figure 6. CNN models applied

2.2.4. Training and testing

In this phase, data will separate in 80:20 which contains 4,809 data testing and 1,203 data training
belonging to 2 classes of malware and non-malware patterns. In the training phase is used train generator.
Training data generators that provide image data in batches, typically use “ImageDataGenerator” from
augmentation. The training phase uses the model.fit () function, which trains the model and records the loss
and accuracy values, and then evaluation is carried out using the validation generator function on the test data
to see the actual model performance.

2.2.5. Fine tuning

Fine-tuning is adjusting a pre-trained model for optimal performance on a new task or dataset. It is a
subset of transfer learning techniques, where a model learned on a large dataset is reused for a different task
with a smaller or specialized dataset. The stages in fine-tuning carried out in this study are starting with the
pre-trained model, and then freezing the Initial layer. The initial layers of the pre-trained model often learn

Comput Sci Inf Technol, Vol. 6, No. 1, March 2025: 68-79

Comput Sci Inf Technol ISSN: 2722-3221 a 73

basic features such as edges, corners, and textures that are generally applicable to many types of images.
Then adjust the final layer, train with a lower learning rate and evaluate the results. During fine-tuning, the
model is trained with a smaller learning rate to make subtle adjustments to the parameters without destroying
previously learned features. The fine-tuning step in this research is shown in Figure 7.

Start
Freeze All Layer

Add New Layer Compile Fine-Tuned —» Generate Data

Fully Connected

Layer T
Dropout Layer Create Mew CNN
(Drops 50% of [— Model with Adding

Neurons) Layer

Figure 7. Fine tuning step

2.2.6. Evaluation

In this evaluation stage, the performance of the CNN classifier is measured by using a confusion
matrix as a measurement metric. Measurement metrics in deep learning are used to assess a model's
performance throughout training and evaluation. They provide insights into how effectively the model learns
and adapts to new data. In this stage, the values of accuracy, precision, recall, and F1 score will be measured
by calculating the true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The
measurement metrics from evaluation stage can be found in (1) to (4).

— _ (@P4TN)
Accuracy = (TP+FP+FN+TN) @
Precision = —— o
TP+FP
Recall = —~ o
TP+FN
F1Score = 2 x Recall xPrecision) “

(Recall + Precision)

3. RESULTS AND DISCUSSION

The results and analysis of the data will be discussed in this part. The CNN algorithm has been
applied to classify malware (X) and non-malware (Y) variants. After implementing the algorithm, the system
that has been created will be tested. Testing on the system aims to measure the performance of the model
implemented on the dataset. In the testing stages, a different number of epochs will also be used when
training the previously designed model.

The number of epochs used is 10, 30, 50, 70 and 100. The simple CNN model applies additional
layers to deep learning by providing several basic layers, namely convolutional layers (conv), pooling layers
(pool), fully connected layers and dropout layers using ReLu. In the processing data stage, the augmented
dataset was implemented. The data transformed to 128x128 from 256x256 pixels. The next stage is calling
the model function, i.e.: Simple CNN by applying the neural network cross-entropy loss function and calling
the Adam optimizer function. Then the next stage is to carry out training data by entering the epoch value
several times as a comparison for better accuracy. In the validation stage of the testing results, several
functions are used to determine accuracy values. Several functions are used, including to display comparisons
of total loss, accuracy, confusion matrix, precision values, accuracy, recall, F1 score, and receiver operating
characteristic (ROC)-AUC.

The accuracy of the predictions in relation to the total testing data was assessed in this study using
the accuracy and loss variables, as indicated in Table 1. While the recall is generated to test the CNN model's
error in identifying patterns other than malware, precision is generated to measure the CNN model's mistake
in predicting the proper object. It is anticipated that the model in this study will have greater recall and
accuracy values than precision values. Google Collabs software was used as a tool to analyze previously
obtained datasets which used Python programming language, connected to the runtime with the T4 GPU for
running the process quickly and setting the RAM using NVIDIA graphics. After running the process with the
simple CNN model, evaluate the model by measuring validation loss and accuracy in any epoch as shown in
Table 1.

Detection of android malware with deep learning method using convolutional neural ... (Reza Maulana)

74 a

ISSN: 2722-3221

Table 1. Result and comparison between validation loss and validation accuracy

Total Epoch

Validation Loss

Validation Accuracy

10 Model Loss Model Accuracy
109 — Traireng Loss
94 |\ Validation Loss 0.925
aad -_ 0.300
A
a1 0875]
w 061 A N Z 0ss0 / \ [
|} . \ ’_'.’ H - \'-. |
as4 \ / § oaxs / \ [
044 \ o o D00 V4 "_" I.I
L - \
a3 / 071s \
—_— A _ v
\'_/4\/— ars0 — Taining Accuracy
oz Validation Accuracy
o 2 & L] a a 2 4 L L]
Epoch Epach
0.5306247472763062 0.864505410194397
30 Model Loss Model Accuracy
2,00 —— Training Loss 109
—— Validation Loss
175 0.94
150
0.8
1251 IS
2 ¢ 07
3 100 g
0.75 4 o1
0,509 0.59
0.25 04l —— Training Accuracy
: —— validation Accuracy
0 5 10 15 20 25 B 0 5 10 15 20 25 30
Epoch Epoch
0.25273627042770386 0.9268495440483093
50 Model Loss Model Accuracy
as —— Training Loss 100
&9 4 —— validation Loss l‘
06
A A
05 !
' /
204 v x
03
02
01
—— Training Accuracy
00 —— Validation Accuracy
° 10 20) 0 0 0 10 20)) 50
Epoch Epoch
0.2981289029121399 0.916043221950531
70 Model Loss Model Accuracy
= Training Loss 100
—— Validation Loss
o8
0954
06
g
. 090
8
04 L
0es
0z
—— Training Accuracy
0o e —— Vahdation Accuracy
0 10 20 » 0 50 60 7 o 10 20 » 40 50 60)
Epoch Epoch
0.2427741140127182 0.9318370819091797
100 Model Loss Model Accuracy
175 —— Training Loss 1.00
‘ —— Validation Loss
150 095
125 090
g 1 ‘ Ea.ss
L} o
075 <
.80
0.50
075
025 o
00 —— Training Accuracy
Validation Accuracy
0.00
o 20 40 60 80 100 9) o o w 300
Epoch Epoch
0.26761937141418457 0.9285120368003845

Comput Sci Inf Technol, Vol. 6, No. 1, March 2025: 68-79

Comput Sci Inf Technol ISSN: 2722-3221 a 75

From Table 1, the validation loss and accuracy results show the different values within any epochs
(10, 30, 50, 70, and 100), with the best validation start in 30 epochs with a validation loss value of 0.2 and an
accuracy score of 0.93. In this case, the tested dataset has no underfitting or overfitting so, it can be used for
better system deployment. The result showed that the simple CNN model can still detect malware attack
patterns through data classification for malware and non-malware classes. The comparison of the confusion
matrix and ROC graph in any epoch is shown in Table 2.

Table 2. Result of confusion matrix and ROC

10 Confusion Matrix Receiver Operating Characteristic
10 -
|- so0 //’
08 g
400 d
o
o0 H
5
£ os
200
0z
- 100
. — R0C curve farea = 1.00)
ok
ao o2 s 96) 10
prectedd Falze Positive Rale
30 Confusion Matrix Receiver Operating Characteristic
10
00 (
s
400 . .
%0 s
£
£ o4
200
0z
100
— ROC curve farea = 1.00)
0 oo 1
v (] o2 s a6 a8 1o
o False Positive Rate
50 Confusian Matrix Receiver Operating Characteristic +
10
00 ’
o8
400
2 o6 -
g e
300] -
E o
200 .
02 -
100
— ROC curve (area = 1.00)
00
malware 00 o2 oa o5 o8 10
Precicted False Positive Rate
70 Confusion Matrix Receiver Operating Characteristic
10 f -
500 7 -
[X] L
400 .
] -
2 06 -
. -
00 % e
£ o4
200 -
0z s
100 e
7 = ROC curve (area = 1.00)
\ o
benign matware 0e 0z 04 o6 o8 10
Predicted False Positive Rate
100 Confusion Matrix Receiver Operating Characteristic
10 h z
- 500 .
o8
- ao0 s
2 06 4
8 - 300 &
£] .
s ’
£ 04 4
200
02 -
- 100 -
e —— ROC curve (area = 1.00)
| 0o
benign matware a0 02 04 06 s 10
Predicted False Positive Rate

Detection of android malware with deep learning method using convolutional neural ... (Reza Maulana)

76 a ISSN: 2722-3221

From Table 2, The confusion matrix shows scores TP, FN, TN, and FP in malware prediction has
good balance in classification performance for benign and malware samples, with the error rates distributed
proportionally. The high recall suggests that the model prioritizes detecting malware over avoiding false
positives. This is typically ideal for malware detection systems. For the comparison of accuration score in
any epoch can be seen in Figure 8.

From Figure 8, Accuracy score starts at 86.45% with 10 epochs and increases to 93.18% at 70
epochs, at 100 epochs accuracy slightly drops to 92.85%, indicating potential overfitting beyond 70 epochs.
Precision remains high across all epochs, ranging from 95.67% (30 epochs) to 99.33% (100 epochs).
Precision improves significantly after 30 epochs and reaches its highest value at 100 epochs. Recall improves
from 96.83% (10 epochs) to 99.5% (30 epochs), peaks, and then stabilizes at 98.33% (70 epochs). This
suggests the model performs well in identifying all true positives consistently as training progresses. The
F1 score follows a similar pattern as accuracy. It increases significantly, peaking at 98.33% (70 epochs). A
slight improvement occurs at 100 epochs (98.74%), driven by precision improvements. ROC-AUC values are
consistently very high (above 99.65%) across all epochs, indicating the model's strong ability to distinguish
between classes. The highest value (99.8%) is observed at 30 epochs, with marginal variations thereafter.

Accuracy Comparison
101
100

99 * _ ;/

°
A Eee
© - : e g
%D °8 ® / > e
:lji 97 .Kl/ e ()
A 96 o
95
94
93
Accuracy (%) Precision(%) Recall (%) F1 Score (%) ROC-AUC (%)
Measurement Metric
emcmmEpoch 10 ememmEpoch 30 Epoch 50 ememm Epoch 70 em= Epoch 100

Figure 8. Comparison of accuration score

4. CONCLUSION

The deep learning method applied with the simple CNN model to detect Android malware patterns
on Android devices is highly recommended with unstructured data. The pattern of malware attacks is
classified with an average accuracy rate of 92%, the error percentage only reaches less than 10%. The CNN
model applied is effective in classifying and detecting malware attack patterns. This establishes the
effectiveness of the CNN model in detecting Android malware attack patterns and demonstrates its potential
as a reliable malware detection method. Malware patterns on Android devices can be determined by adding
other methods after the classification results are obtained using the simple CNN architecture. The CNN
architecture with the correct composition of additional convolutional layers, pooling layers, fully connected
layers, and ReLu will produce good accuracy. The research provides a robust CNN-based framework for
detecting Android malware. It contributes to understanding the effectiveness of CNN models in handling
unstructured data and optimizing performance through data ratio and epoch analysis. Additionally, it offers a
comprehensive evaluation framework and achieves high detection accuracy, making it a valuable
contribution to Android malware detection. By addressing the evolving nature of Android malware, this
research provides a scalable and robust framework for periodic updates to cybersecurity tools. Detection of
Android malware patterns can also be determined by adding other deep learning models to obtain better
accuracy results. The classification results can be used as benchmark data in building system defences in
cyber security, ensuring their relevance in combating emerging threats.

Comput Sci Inf Technol, Vol. 6, No. 1, March 2025: 68-79

Comput Sci Inf Technol ISSN: 2722-3221 a 77

ACKNOWLEDGEMENTS

The authors thank the Computer Science Magister Program at Sriwijaya University, Palembang,
South Sumatra, Indonesia, and all the support from the academic community of the Computer Science
Magister Program.

FUNDING INFORMATION
No funding is involved in this research.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Reza Maulana v v v v v v v v v v v
Deris Stiawan v v v v v v v v v v v
Rahmat Budiarto v v v v v
C : Conceptualization I : Investigation Vi : Visualization
M : Methodology R : Resources Su : Supervision
S0 : Software D : Data Curation P : Project administration
Va : Validation O : writing - Original Draft Fu : Funding acquisition
Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
The authors confirm that the data supporting the findings of this study are available within the
article [and/or its supplementary materials].

REFERENCES

[1] T. Sharma and D. Rattan, “Malicious application detection in android-A systematic literature review,” Computer Science Review,
vol. 40, 2021, doi: 10.1016/j.cosrev.2021.100373.

[2] P. Sreekumari, “Malware detection techniques based on deep learning,” Proceedings - 2020 IEEE 6th Intl Conference on Big
Data Security on Cloud, BigDataSecurity 2020, 2020 IEEE Intl Conference on High Performance and Smart Computing, HPSC
2020 and 2020 IEEE Intl Conference on Intelligent Data and Security, IDS 2020, pp. 65-70, 2020, doi: 10.1109/BigDataSecurity-
HPSC-1DS49724.2020.00023.

[3] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham, “A two-stage deep learning framework for image-based android
malware detection and variant classification,” Computational Intelligence, vol. 38, no. 5, pp. 1748-1771, 2022,
doi: 10.1111/coin.12532.

[4] A.Razgallah, R. Khoury, S. Hallé, and K. Khanmohammadi, “A survey of malware detection in Android apps: Recommendations
and perspectives for future research,” Computer Science Review, vol. 39, 2021, doi: 10.1016/j.cosrev.2020.100358.

[5] S. Sharma, R. Kumar, and C. R. Krishna, “RansomAnalysis: The evolution and investigation of android ransomware,”
Proceedings of International Conference on loT Inclusive Life (ICIIL 2019), vol. 116, pp. 3341, Apr. 2020, doi: 10.1007/978-
981-15-3020-3_4.

[6] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham, “EfficientNet convolutional neural networks-based Android
malware detection,” Computers and Security, vol. 115, 2022, doi: 10.1016/j.cose.2022.102622.

[7]1 S. Sharma, R. Kumar, and C. Rama Krishna, “A survey on analysis and detection of Android ransomware,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 16, 2021, doi: 10.1002/cpe.6272.

[8] M. Talal et al., “Comprehensive review and analysis of anti-malware apps for smartphones,” Telecommunication Systems, vol. 72,
no. 2, pp. 285-337, 2019, doi: 10.1007/s11235-019-00575-7.

[91 Z.Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, “End-to-end malware detection for android I0T devices using deep learning,”
Ad Hoc Networks, vol. 101, 2020, doi: 10.1016/j.adhoc.2020.102098.

[10] L. Chen, C. Xia, S. Lei, and T. Wang, “Detection, traceability, and propagation of mobile malware threats,” IEEE Access, vol. 9,
pp. 14576-14598, 2021, doi: 10.1109/ACCESS.2021.3049819.

[11] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of Android malware detection approaches based on machine
learning,” IEEE Access, vol. 8, pp. 124579124607, 2020, doi: 10.1109/ACCESS.2020.3006143.

[12] S. Peng, L. Cao, Y. Zhou, J. Xie, P. Yin, and J. Mo, “Challenges and trends of Android malware detection in the era of deep
learning,” Proceedings - 2020 IEEE 8th International Conference on Smart City and Informatization, iSCI 2020, pp. 37-43, 2020,
doi: 10.1109/iSCI50694.2020.00014.

Detection of android malware with deep learning method using convolutional neural ... (Reza Maulana)

78

a ISSN: 2722-3221

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
371

[38]

[39]
[40]

[41]

[42]

N. Lachtar, D. Ibdah, and A. Bacha, “Toward mobile malware detection through convolutional neural networks,” IEEE Embedded
Systems Letters, vol. 13, no. 3, pp. 134-137, 2021, doi: 10.1109/LES.2020.3035875.

D. Waterson, “Managing endpoints, the weakest link in the security chain,” Network Security, vol. 2020, no. 8, pp. 9-13, 2020,
doi: 10.1016/S1353-4858(20)30093-3.

J. Hubbard, G. Bendiab, and S. Shiaeles, “IPASS: a novel open-source intelligence password scoring system,” Proceedings of the
2022 IEEE International Conference on Cyber Security and Resilience, CSR 2022, pp. 90-95, 2022,
doi: 10.1109/CSR54599.2022.9850311.

K. Chung, P. Cao, Z. T. Kalbarczyk, and R. K. lyer, “StealthML: data-driven malware for stealthy data exfiltration,” Proceedings
of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023, pp. 16-21, 2023,
doi: 10.1109/CSR57506.2023.10224946.

J. King, G. Bendiab, N. Savage, and S. Shiaeles, “Data exfiltration: methods and detection countermeasures,” Proceedings of the
2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021, pp. 442-447, 2021,
doi: 10.1109/CSR51186.2021.9527962.

O. Aslan and A. A. Yilmaz, “A new malware classification framework based on deep learning algorithms,” IEEE Access, vol. 9,
pp. 87936-87951, 2021, doi: 10.1109/ACCESS.2021.3089586.

A. Abusnaina et al., “DL-FHMC: deep learning-based fine-grained hierarchical learning approach for robust malware
classification,” |IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp. 3432-3447, 2022,
doi: 10.1109/TDSC.2021.3097296.

Z. Wang, Q. Liu, and Y. Chi, “Review of Android malware detection based on deep learning,” IEEE Access, vol. 8,
pp. 181102-181126, 2020, doi: 10.1109/ACCESS.2020.3028370.

Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android malware familial classification based on DEX file section features,” IEEE
Access, vol. 8, pp. 10614-10627, 2020, doi: 10.1109/ACCESS.2020.2965646.

I. U. Haq, T. A. Khan, and A. Akhunzada, “A dynamic robust DL-based model for Android malware detection,” IEEE Access,
vol. 9, pp. 74510-74521, 2021, doi: 10.1109/ACCESS.2021.3079370.

N. Zhang, Y. an Tan, C. Yang, and Y. Li, “Deep learning feature exploration for Android malware detection,” Applied Soft
Computing, vol. 102, 2021, doi: 10.1016/j.as0c.2020.107069.

A. Pektag and T. Acarman, “Deep learning for effective Android malware detection using API call graph embeddings,” Soft
Computing, vol. 24, no. 2, pp. 1027-1043, 2020, doi: 10.1007/s00500-019-03940-5.

O. Aslan and R. Samet, “A comprehensive review on malware detection approaches,” IEEE Access, vol. 8, pp. 62496271, 2020,
doi: 10.1109/ACCESS.2019.2963724.

J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damasevicius, “An efficient densenet-based deep learning model for
Malware detection,” Entropy, vol. 23, no. 3, 2021, doi: 10.3390/e23030344.

M. Chen, Q. Zhou, K. Wang, and Z. Zeng, “An Android malware detection method using deep learning based on multi-features,”
2022 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2022, pp. 187-190, 2022,
doi: 10.1109/ICAICA54878.2022.9844642.

E. C. Bayazit, O. K. Sahingoz, and B. Dogan, “A deep learning based android malware detection system with static analysis,”
HORA 2022 - 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings,
2022, doi: 10.1109/HORA55278.2022.9800057.

A. Alzubaidi, “Sustainable android malware detection scheme using deep learning algorithm,” International Journal of Advanced
Computer Science and Applications, vol. 12, no. 12, pp. 860-867, 2021, doi: 10.14569/IJACSA.2021.01212104.

A. Lakshmanarao and M. Shashi, “Android malware detection with deep learning using RNN from opcode sequences,”
International Journal of Interactive Mobile Technologies, wvol. 16, no. 1, pp. 145-157, Jan. 2022, doi:
10.3991/1JIM.V16101.26433.

Y. Liu, G. Li, and Z. Jin, “Call graph based android malware detection with CNN,” Communications in Computer and
Information Science, vol. 861, pp. 72-82, 2019, doi: 10.1007/978-981-15-0310-8_5.

J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, “MAPAS: a practical deep learning-based android malware detection system,”
International Journal of Information Security, vol. 21, no. 4, pp. 725-738, 2022, doi: 10.1007/s10207-022-00579-6.

R. Feng, S. Chen, X. Xie, G. Meng, S. W. Lin, and Y. Liu, “A performance-sensitive malware detection system using deep
learning on mobile devices,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1563-1578, 2021,
doi: 10.1109/TIFS.2020.3025436.

1. Almomani, A. Alkhayer, and W. El-Shafai, “An automated vision-based deep learning model for efficient detection of android
malware attacks,” IEEE Access, vol. 10, pp. 2700-2720, 2022, doi: 10.1109/ACCESS.2022.3140341.

R. M. Sharma and C. P. Agrawal, “MH-DLdroid: a meta-heuristic and deep learning-based hybrid approach for android malware
detection,” International Journal of Intelligent Engineering and Systems, vol. 15, no. 4, pp. 425-435, 2022,
doi: 10.22266/ijies2022.0831.38.

M. S. Akhtar and T. Feng, “Detection of malware by deep learning as CNN-LSTM machine learning techniques in real time,”
Symmetry, vol. 14, no. 11, 2022, doi: 10.3390/sym14112308.

N. Afifah and D. Stiawan, “The implementation of deep neural networks algorithm for malware classification,” Computer
Engineering and Applications Journal, vol. 8, no. 3, pp. 189-202, 2019, doi: 10.18495/comengapp.v8i3.294.

R. B. Hadiprakoso, I. K. S. Buana, and Y. R. Pramadi, “Android malware detection using hybrid-based analysis deep neural
network,” 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, pp. 252-256,
2020, doi: 10.1109/1ICOIACT50329.2020.9332066.

H. 1l Kim, M. Kang, S. J. Cho, and S. Il Choi, “Efficient deep learning network with multi-streams for android malware family
classification,” IEEE Access, vol. 10, pp. 5518-5532, 2022, doi: 10.1109/ACCESS.2021.3139334.

D. Stiawan et al., “An improved LSTM-PCA ensemble classifier for SQL injection and XSS attack detection,” Computer Systems
Science and Engineering, vol. 46, no. 2, pp. 1759-1774, 2023, doi: 10.32604/csse.2023.034047.

T. L. Nikmah, J. Jumanto, B. Prasetiyo, N. Fitriani, and M. A. Muslim, “Deep learning model implementation using convolutional
neural network algorithm for default P2P lending prediction,” Jurnal IImiah Teknik Elektro Komputer dan Informatika, vol. 9,
no. 3, pp. 802-809, Aug. 2023, doi: 10.26555/jiteki.v9i3.26366.

F. Fatimatuzzahra, L. Lindawati, and S. Soim, “Development of convolutional neural network models to improve facial
expression recognition accuracy,” Jurnal llmiah Teknik Elektro Komputer dan Informatika, vol. 10, no. 2, pp. 279-289,
Jun. 2024, doi: 10.26555/jiteki.v10i2.28863.

Comput Sci Inf Technol, Vol. 6, No. 1, March 2025: 68-79

Comput Sci Inf Technol ISSN: 2722-3221 a 79

BIOGRAPHIES OF AUTHORS

Reza Maulana © E:{ B8 © s a student who will complete a master's degree in the Computer
Science program at Sriwijaya University. The fields of concentration he is studying are
networking and cyber security. He also works at a private company in Palembang, Indonesia,
focusing on marketing managerial and services in the IT and networking fields. He has also
joined in network research and filling workshops as a trainee, he has the competence and has
been certified as a MikroTik Certified Network Associate (MTCNA) and MikroTik Certified
Routing Engineer (MTCRE). He can be contacted at email: reza.javas@gmail.com.

Deris Stiawan & B4 B © is a Professor in the Faculty of Computer Science University of
Sriwijaya, Indonesia. He is a member of IEEE and since 2010 he has joined on Pervasive
Computing Research Group (PCRG) Universiti Teknologi Malaysia. His professional profile
has derived to computer and network security fields, focused on network attack and intrusion
prevention/detection systems. In 2011, he holds Certified Ethical Hacker (C|EH) & Certified
Hacker Forensic Investigator (C|HFI) licensed from EC-Council USA and Cisco Certified
Networking Associate in 2005. He can be contacted at email: deris@unsri.ac.id.

Rahmat Budiarto & £:J B8 © received B.Sc. degree from Bandung Institute of Technology
in 1986, M.Eng, and Dr. Eng in Computer Science from Nagoya Institute of Technology in
1995 and 1998 respectively. Currently, he is a full professor at College of Computing and and
Information, Albaha University, Saudi Arabia. He was the chairman of Network Security
Working Group at Asia Pacific Advanced Networks (APAN) from January 2006 to August
2008, and the chairman of Fellowship Committee at Asia Pacific Advanced Networks (APAN)
from January 2007 to August 2008. He was the deputy director and co-founder of National
Advanced IPv6 (NAv6) Center, under the Ministry of Energy, Water, and Communication,
Malaysia. His research interests include IPv6, network security, wireless sensor networks and
intelligent systems. He can be contacted at email: rahmat@bu.edu.sa.

Detection of android malware with deep learning method using convolutional neural ... (Reza Maulana)

mailto:reza.javas@gmail.com
mailto:deris@unsri.ac.id
https://orcid.org/0009-0003-7558-5306
https://scholar.google.com/citations?user=nYr6-wsAAAAJ&hl=id&oi=ao
https://www.webofscience.com/wos/author/record/MDS-8605-2025
https://orcid.org/0000-0002-9302-1868
https://scholar.google.com/citations?user=faXE7tQAAAAJ&hl=id&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=36449642900
https://www.webofscience.com/wos/author/record/102031
https://orcid.org/0000-0002-6374-4731
https://scholar.google.com/citations?user=Qi24UpwAAAAJ&hl=en&oi=sra
https://www.scopus.com/authid/detail.uri?authorId=58131692700
https://www.webofscience.com/wos/author/record/1971852

