

Technology adoption model for smart urban farming-a proposed conceptual model

**Amirul Asyraf Zahir¹, Mohd Ilias M Shuhud^{1,5}, Siti Munirah Mohd^{2,5}, Shafinah Kamarudin³,
Azuan Ahmad¹, Rossly Salleh⁴, Norita Md Norwawi¹**

¹Faculty of Science and Technology, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia

²Kolej PERMATA Insan, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia

³Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia

⁴Kolej Universiti Agrosains Malaysia, Melaka, Malaysia

⁵Cybersecurity and Systems Research Unit, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia

Article Info

Article history:

Received Aug 9, 2024

Revised Oct 1, 2024

Accepted Oct 7, 2024

Keywords:

Innovation diffusion theory

Smart urban farming

Sustainable development goals

Technology adoption model

ABSTRACT

Technological advancements have made their way into the heart of human civilization across numerous fields, namely healthcare, logistics, and agriculture. Amidst the sprouting issues and challenges in the agriculture sector, particularly, the growing trend of integrating agriculture and technologies is roaring. The public and private sectors work hand in hand with regard to addressing these complex issues and challenges that arise, aiming for efficient and sustainable possible solutions. This study is a continuation of a previous systematic literature review; hence, the main objective is to deliver a proposed conceptual model for technology adoption specifically for smart urban farming. Innovation diffusion theory (IDT) is used as the main foundation of the proposed conceptual model, supplemented with additional factors drawn from other existing technology adoption models both the originals and extended versions. The outcome of the study is expected to reveal valuable insights into the components affecting the technology adoption model in smart urban farming, which will be further laid out upon in the upcoming study, offering a robust framework for future studies and applications in smart urban farming.

This is an open access article under the [CC BY-SA](#) license.

Corresponding Author:

Mohd Ilias M Shuhud

Faculty of Science and Technology, Universiti Sains Islam Malaysia

Negeri Sembilan, Malaysia

Email: ilius@usim.edu.my

1. INTRODUCTION

In the occurrence of the Industrial Revolution 4.0, almost every field embraced the integration of a conventional sphere with various technologies [1]–[4]. The integration of such technologies definitely brings abundant and valuable benefits to the world. In the realm of agriculture, the integration of technology is termed “smart farming” or “smart agriculture” or “digital agriculture” and others. Cutting-edge technologies, namely the internet of things (IoT), cloud infrastructure, automation, and sensor technologies, to name a few. Smart farming is recognized as a catalyst to increase the quality and quantity of production, maximizing resources while minimizing detrimental effects. The integration of technology into the agriculture sector is a growing trend, gradually accepted by the masses, particularly in developed countries. The global smart farming industry is expected to grow exponentially to \$33 billion by the year 2027 [5].

The blooming trends have directly shaped the field of technology adoption. Technology adoption is not distinct from the smart farming field. It has been applied in numerous fields. Various studies, particularly in smart farming, have been done and are expected to increase in the future [6]–[9]. Studies on technology adoption in smart farming are vital for multiple stakeholders, including potential users and policymakers. These studies lay out the challenges and barriers to adoption clearly and offer latent solutions. Some of the challenges and barriers includes the economic and financial conditions, technological infrastructure, relevance technological knowledge and behaviors [10]. There is no doubt that understanding these challenges and barriers are extremely vital in technology adoption.

In technology adoption studies, a variety of models have been adopted; some were integrated or extended to fit the nature of the studies. Among the established and well-known models are innovation diffusion theory (IDT), theory of planned behavior (TPB), theory of reasoned action (TRA), technology acceptance model (TAM), and others [11]–[16]. This study is a continuation of a previous systematic literature review, defining the main goal of the study [17]. This study is to deliver a proposed technology adoption model within the context of smart urban farming technology adoption. The additional term “urban” in smart urban farming, as the name suggests, will focus on the urban area. This study is expected to reveal valuable insights into the components affecting the technology adoption model in smart urban farming, which will be laid out in the upcoming study. In accordance with Sustainable Development Goal 2 (SDG2): Zero Hunger, this study will be one of the potential panaceas for addressing challenges that arose [18].

The study is organized as follows. Section 2 presents the technology adoption models. Section 3 discusses the proposed conceptual model for smart urban farming. Finally, section 4 concludes the study.

2. TECHNOLOGY ADOPTION MODELS

Established technology adoption models, derived from previously linked studies are presented. These technology adoption models, and their factors are among the potential candidates under consideration for the proposed conceptual framework. Diffusion of innovation (DoI) or IDT, developed by Rogers [19], is grounded on five key factors: relative advantage, compatibility, complexity, trialability, and observability as shown in Figure 1. For instance, one may be more likely to adopt a new agricultural technology if it is able to show a clear relative advantage, such as reduced resources wastage. Compatibility with existing farming practices could be an important element to the adoption, if the technology could be integrated well with one's routines. Complexity of the agricultural technology should be minimal, ensuring it to be easy to understand and operate. Technology that can be trialed with a limited basis, may have an impact to one's determination to adopt. Observable results of the technology can influence others to follow.

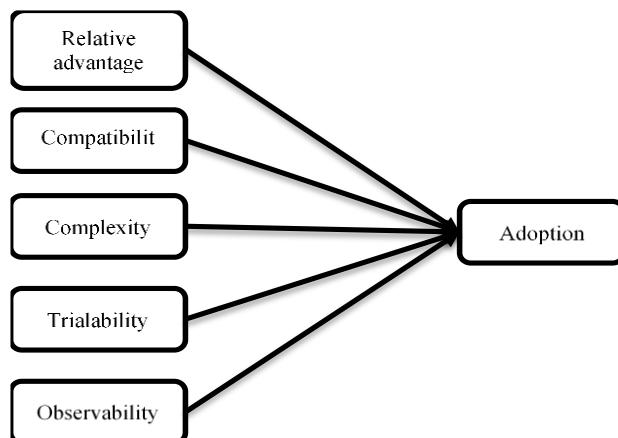


Figure 1. IDT model [19]

The TPB, developed by Ajzen [20], is driven by intention, which are grounded on attitude, subjective norms and perceived behavioral control shows in Figure 2. The model highlights the importance of social influence which can be vital in technology adoption. For instance, if positive attitude of one towards a sustainable technology-driven farming practices is supported and see fit by the community with an adequate resources and skills, the adoption rate is likely higher.

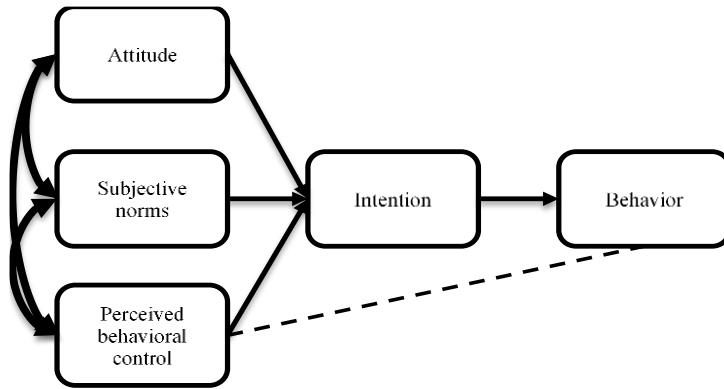


Figure 2. TPB model [20]

The TAM, proposed by Davis [21], is grounded on two primary elements; perceived usefulness and perceived ease of use, which in turn influence attitude and behavioral intention shows in Figure 3. This model has been widely applied in numerous fields, including agriculture, where one's perceptions may lead to an effective technology adoption. For instance, if a new farm monitoring system software is perceived by one as useful by providing valuable insights and improve efficiency, more people are likely to adopt it. Similarly, more people are likely to adopt it if the new farm monitoring system software is user-friendly and easy to use.

The attention-interest-desire-action (AIDA) model is a framework model for marketing and advertising but has its relevance in technology adoption, it has gained popularity with the advancement of technology over the years. This model is grounded on; as the name suggests attention, interest, desire, and action as shown in Figure 4. For instance, one's attention is captured towards a new agricultural technology through a demonstration. Once one shows interest, supplementary materials on the technology can advance the desire by highlighting the advantages and potentials of the technology to increase yields. Then, easy access provided towards the technology to purchase or trials program enable the action element, which encouraging the technology adoption.

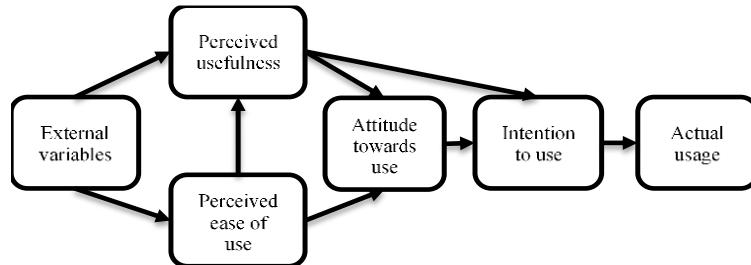


Figure 3. TAM model [22]

Figure 4. AIDA model [23]

The technological-organizational-environmental (TOE) model, proposed by Tornatzky *et al.* [24], is grounded on three contexts; technology, organization, and environment as shown in Figure 5. This model emphasizes the need to consider both internal and external factors influence in technology adoption. For instance, a farm's decision to adopt a particular agricultural technology might depends on the technological readiness of existing available manpowers, tools and equipments, the culture of the organization whether it supports innovation in farming practices, and regulations by local authority. Each and every factor embedded in these models are unique. Integrating these factors in the proposed conceptual model can lead the way to an effective and efficient development of technology adoption in smart urban farming.

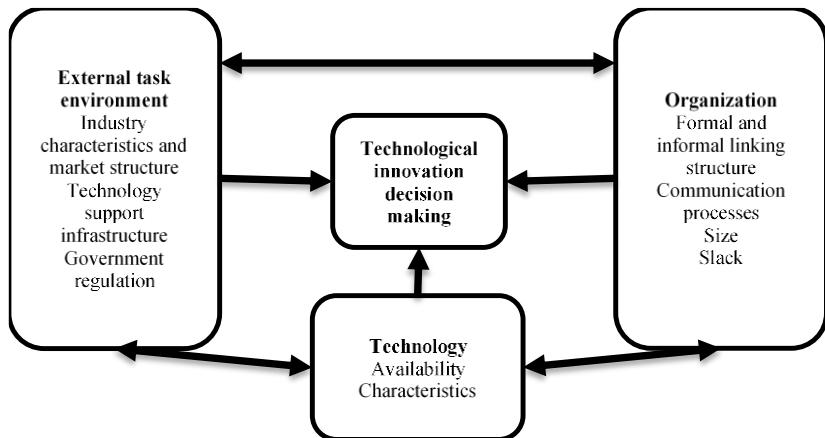


Figure 5. TOE model [25]

3. PROPOSED CONCEPTUAL MODEL FOR SMART URBAN FARMING TECHNOLOGY ADOPTION

The proposed conceptual model is rooted mainly in the IDT, with additional factors embraced from the other technology adoption models. Three factors from IDT were selected: relative advantage, compatibility, and complexity. Additional factors selected were subjective norms from the TPB model, behavioral intention from the TAM model, interest from the AIDA model, IT knowledge, financial cost, innovativeness, government support, digital environment change from the TOE model, and finally, urban farming characteristics as an additional external factor shows in Figure 6. The following hypotheses are proposed:

Relative advantage can be defined as “*The degree to which the new proposed smart urban farming technology is perceived as better than the existing alternatives*”. Relative advantage is a crucial factor, as it reflects the perceived benefits of adopting new technology compared to existing practices [26], [27]. The adoption of technology was significantly influenced by the advantages highlighted in previous studies with the technology’s integration, where efficiency, productivity, and cost savings were weighed in. In the context of smart urban farming, the technologies mentioned are those that, namely, enhance crop yields, reduce resource wastage, or improve efficiency.

H1: *Perceived relative advantage positively influences the behavioral intention to adopt smart farming urban technologies.*

Compatibility factor can be defined as “*The degree to which the new smart urban farming technology fits with the potential users' existing values, experiences, and needs*”. Compatibility refers to how well the new technology aligns with the existing values, past experiences, and needs of potential adopters. Technologies are more likely to be adopted if they are fully compatible with conventional current practices and social norms [28], [29]. In the context of smart urban farming, the compatibility of existing farming practices and urban infrastructure is important to ease the integration and acceptance by individuals. Emphasizing the compatibility of a new technology with the potential users' values and needs may assist in smoother integration and wider acceptance, contributing to a more effective and sustainable urban farming practice.

H2: *Higher compatibility of smart urban farming technologies within existing practices reduced perceived complexity.*

Complexity refers to “*The degree of perceived difficulty in understanding and using the new smart urban farming technology*”. Potential adopters may be resistant to adopting particular technologies that are deemed complex or difficult [30], [31]. Simplifying the technology specifically for potential users can definitely reduce the concerns that arose, making it attainable to individuals in smart urban farming. By focusing on user-friendly interfaces, training programs, simplified infrastructure, and system design, smart urban farming technologies can become more accessible and appealing to potential adopters.

H3: *Lower perceived complexity positively influences the behavioral intention to adopt smart urban farming technologies.*

Subjective norms refer to “*The degree of influence of social pressure for smart urban farming technology adoption from the surrounding communities on an individual's decision*”. This factor involves the influence of the communities' pressure towards the adoption of a particular technology and can be in the form of motivation or judgement [32], [33]. According to Ajzen [20], it could be peers, family, or society designating the communities. In the context of smart urban farming, positive public endorsements from the communities would definitely aid in the acceptance and adoption of smart urban farming technology.

H4: Subjective norms positively influence the behavioral intention to adopt smart urban farming technologies.

Behavioral intention can be defined as “*The degree to which an individual is inclined to use the new smart urban farming technology*”. According to Davis *et al.* [22], behavioral intention is a key to actual technology adoption for potential users. It indicates the intention of users' to actually use the technology based on its usefulness and ease of use [34]–[36]. Understanding, enhancing, and easing the adoption of technology in smart urban farming will lead to increased utilization and the benefits offered by smart urban farming technology.

Interest can be defined as “*The degree of curiosity and engagement that potential users exhibit towards the new smart urban farming technology*”. The AIDA model fundamentally emphasizes the process of attraction for potential individuals. Interest is a crucial factor in catching and sustaining the attention of potential adopters [23], [37]–[39]. In the context of smart urban farming, integrating this factor, which includes educational programs, showcasing real-world applications, and providing interactive experiences, can encourage the adoption of smart urban farming technology among potential adopters.

H5: Interest in smart urban farming technologies positively influences the behavioral intention to adopt them.

IT knowledge refers to “*The degree of understanding and skills of individuals related to information technology in smart urban farming*”. In utilizing new technologies effectively, IT knowledge is essential [30]. Individuals with higher levels of IT knowledge are better prepared for the implementation of technological innovations [40]. In smart urban farming, an adequate level of IT knowledge among potential individuals is vital for the successful implementation of the technology. By enhancing IT knowledge through education and training programs, a smooth transition to technology integration can be achieved.

H6(a): A higher level of IT knowledge positively influences interest in smart urban farming technologies.

H6(b): A higher level of IT knowledge positively influences innovativeness towards smart urban farming technologies.

H6(c): A higher level of IT knowledge positively influences adaptation to digital environment change.

Financial cost refers to “*The degree of expenses associated with the adoption of the new smart urban farming technology*”. Financial cost is a significant factor to consider in the adoption of a new technology [41]–[43]. It is more likely to be a barrier when the initial costs are fairly high [24], [44]. Reducing the cost or making the technology affordable, particularly in smart urban farming, would definitely enhance the adoption rate [45]. Some other alternatives, such as financial incentives and affordable options, may also achieve the same outcome. By focusing on this strategy, smart urban farming technology can be more accessible and attractive to potential adopters.

H7: Lower financial costs positively influence the behavioral intention to adopt smart urban farming technologies.

Innovativeness refers to “*The degree of which an individual's openness and willingness to adopt new ideas or technologies for smart urban farming*”. Highly innovative individuals are more likely to adopt new technologies [9], [19], [30], [33], [46]. Cultivating innovative rationale and culture within the community, providing education and training programs, and creating support networks would significantly drive the adoption of smart urban farming technology.

H8a: Innovativeness positively influences the behavioral intention to adopt smart urban farming technologies.

H8b: *Innovativeness positively influences interest in smart urban farming technologies.*

Government support refers to “*The degree of policies, incentives, and resources provided by the local government to assist in the technology adoption of smart urban farming*”. Pillar programs by the government have a role in facilitating technology adoption [24], [37], [47]. In the context of smart urban farming, government support can be a game changer by creating an enabling environment for the masses. Fair and effective policies, financial incentives, and resource allocation with additional support networks from public-private partnerships can significantly break the barriers and boost smart urban farming technology adoption rates.

H9: Government support positively influences the perceived financial cost of adopting smart urban farming technologies.

Digital environment change refers to “*The degree of occurring evolution and advancements made in digital technologies*”. Innovations in technology move in unison with the digital environment. Continuous progress in an evolving digital environment influences the innovation, adaptation, and adoption of new technologies [24]. Conventional agricultural practices must be in the same tone as technological progress to be productive and efficient. Embracing and adapting to the ever-evolving digital environment is essential to fully harnessing the potential benefits of smart urban farming technology integration in the agricultural sector.

H10: *Digital environment changes positively influence government support for smart urban farming technologies.*

Urban farming characteristics refer to “*The degree to which specific factors, such as the size and location of farms within urban areas, influence the adoption of smart urban farming technology*”. These unique factors influence technology adoption based on the needs and challenges that arise [7]. Tailoring smart urban farming technologies to these unique needs and challenges can enhance the adoption rate and improve agricultural practices.

H11: *Urban farming characteristics positively influence behavioral intentions to adopt smart farming technologies.*

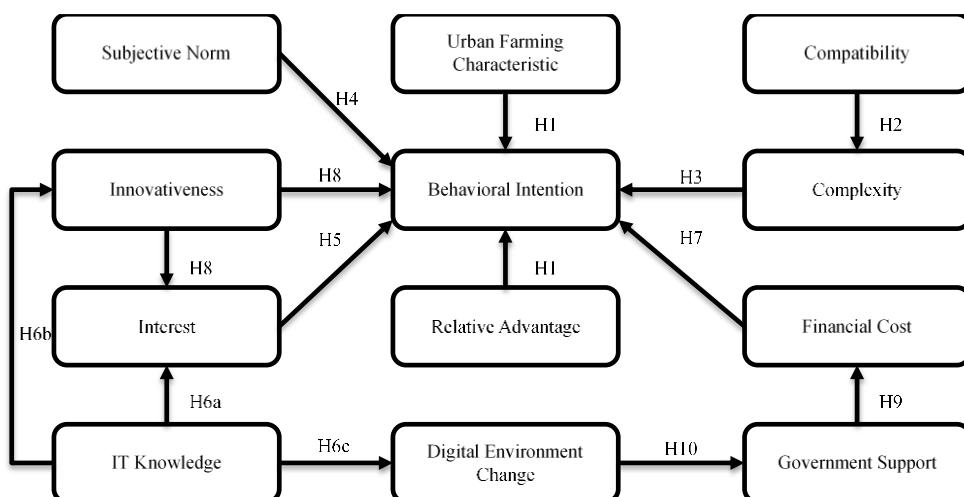


Figure 6. Proposed conceptual model

4. CONCLUSION

4. CONCLUSION
In the realm of Industrial Revolution 4.0, smart farming is among the potential remedies for the issues and challenges that arose. The integration of technologies within the agricultural sector marks a significant step towards improving and optimizing both productivity and resources efficiently. The blooming trends in technology adoption in developed nations highlight the necessity of smart farming to secure the future of the industry.

This study aimed to provide a proposed conceptual model for technology adoption in smart urban farming, leveraging IDT as its foundation and supplemented with factors from other existing technology adoption models, including both the originals and extended versions. Through an extensive systematic literature review conducted previously, this study has identified crucial and relevant factors related to the adoption of smart urban farming technologies, including relative advantage, compatibility, complexity, subjective norm, innovativeness, interest, IT knowledge, behavioral intention, financial cost, government support, digital environment change, and urban farming characteristics.

The proposed conceptual model aims to serve as a medium or a bridge, connecting the points of theoretical concepts and practical applications. The proposed conceptual model offers a clear pathway and valuable insights for the successful integration of technology into conventional agriculture. Successful integration of the proposed conceptual model will support Sustainable Development Goal 2: Zero Hunger by eliminating hunger for the world population while promoting sustainable agricultural practices, fostering for a more efficient and technology-driven sector. The proposed conceptual model is expected to reveal valuable insights into the components affecting the technology adoption model in smart urban farming, which will be laid out in the upcoming study. This study not only contributes to the academia but also aims to provide possible strategies for stakeholders in the agricultural sector, driving the change in farming practices.

ACKNOWLEDGEMENTS

This research is part of a research project supported by the Ministry of Higher Education of Malaysia, Fundamental Research Grant Scheme (FRGS/1/2023/ICT03/USIM/02/2).

REFERENCES

- [1] Y. Zhao, S. G. Sazlina, F. Z. Rokhani, K. Chinna, J. Su, and B. H. Chew, "The expectations and acceptability of a smart nursing home model among Chinese older adults: a mixed methods study," *BMC Nursing*, vol. 23, no. 1, 2024, doi: 10.1186/s12912-023-01676-0.
- [2] G. Yusufi and N. Nathan, "A novel model of smart education for the development of smart university system," *2020 International Conference in Mathematics, Computer Engineering and Computer Science, ICMCECS 2020*, 2020, doi: 10.1109/ICMCECS47690.2020.9240912.
- [3] M. I. Nashiruddin and S. Winalisa, "Designing LoRaWAN internet of things network for smart manufacture in Batam Island," *2020 8th International Conference on Information and Communication Technology, ICOICT 2020*, 2020, doi: 10.1109/ICOICT49345.2020.9166426.
- [4] C. A. Cáceres Flórez, J. M. Rosário, and D. A. Hurtado, "Application of automation and manufacture techniques oriented to a service-based business using the internet of things (IoT) and industry 4.0 concepts. Case study: smart hospital," *Gestao e Producao*, vol. 27, no. 3, 2020, doi: 10.1590/0104-530x5416-20.
- [5] M. Shahbandeh, "Smart agriculture - statistics & facts," *Statista*. <https://www.statista.com/topics/4134/smart-agriculture/#topicOverview> (accessed Feb. 21, 2024).
- [6] R. M. A. Ambong and M. A. Paulino, "Analyzing rice farmers' intention to adopt modern rice technologies using technology acceptance model (TAM)," *Asian Research Journal of Agriculture*, pp. 21–30, 2020, doi: 10.9734/arja/2020/v13i130094.
- [7] V. Otter and L. Beer, "Alley cropping systems as ecological focus areas: A PLS-analysis of German farmers' acceptance behaviour," *Journal of Cleaner Production*, vol. 280, 2021, doi: 10.1016/j.jclepro.2020.123702.
- [8] P. Xiang and J. Guo, "Understanding farmers' intentions to adopt pest and disease green control techniques: comparison and integration based on multiple models," *Sustainability (Switzerland)*, vol. 15, no. 14, 2023, doi: 10.3390/su151410822.
- [9] A. Bagheri and N. Emami, "Farmers' intention to use precision farming technologies, application of the 3 extended technology acceptance model: A case in Ardabil province," *Journal of Agricultural Science and Technology*, 2024.
- [10] T. Dibbern, L. A. S. Romani, and S. M. F. S. Massruhá, "Main drivers and barriers to the adoption of digital agriculture technologies," *Smart Agricultural Technology*, vol. 8, 2024, doi: 10.1016/j.atech.2024.100459.
- [11] V. Hannus and J. Sauer, "Understanding farmers' intention to use a sustainability standard: The role of economic rewards, knowledge, and ease of use," *Sustainability (Switzerland)*, vol. 13, no. 19, 2021, doi: 10.3390/su131910788.
- [12] K. Freeman and H. Qin, "The role of information and interaction processes in the adoption of agriculture inputs in Uganda," *Agronomy*, vol. 10, no. 2, 2020, doi: 10.3390/agronomy1002020.
- [13] M. H. Rasyidha, M. Najib, and U. Sumarwan, "The influence of intention to use medians potato varieties on the result of technological innovation development with technology acceptance models," *Jurnal Manajemen*, vol. 24, no. 1, p. 38, 2020, doi: 10.24912/jm.v24i1.617.
- [14] W. Adiyoga, "Innovation attributes and their linkages to behavioral drivers of farmers' intention to adopt true shallot seed," *E3S Web of Conferences*, vol. 316, 2021, doi: 10.1051/e3sconf/20213160203.
- [15] I. E. Elawad, "Evaluation of the impact of eco-farm project on agricultural productivity and food security in," *Norwegian University of Life Sciences*, 2019.
- [16] M. Shah, W. J. Grant, and S. Stocklmayer, "Adoption of hybrid rice in bangladesh: farm level experience," *Journal of Agricultural Science*, vol. 6, no. 7, 2014, doi: 10.5539/jas.v6n7p157.
- [17] A. A. Zahir, *Smart farming technology adoption model-a systematic literature review*. 2024.
- [18] U. Nations, "Goal 2: zero hunger," *United Nations*, 2024. <https://www.un.org/sustainabledevelopment/hunger/> (accessed Mar. 22, 2024).
- [19] E. M. Rogers, *Diffusion of innovations*, 5th Edition (Google eBook). Free Press, 2003.
- [20] I. Ajzen, "The theory of planned behavior," *Organizational Behavior and Human Decision Processes*, vol. 50, no. 2, pp. 179–211, 1991, doi: 10.1016/0749-5978(91)90020-T.
- [21] F. D. Davis, "A technology acceptance model for empirically testing new end-user information systems: Theory and results," *Management*, vol. Ph.D., p. 291, 1985, doi: oclc/56932490.
- [22] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, "User acceptance of computer technology: a comparison of two theoretical models,"

Management Science, vol. 35, no. 8, pp. 982–1003, 1989, doi: 10.1287/mnsc.35.8.982.

[23] P. Chakrabarty, “(PDF) AIDA model Research,” *Dr. K.N. MODI UNIVERSITY*, 2023, [Online]. Available: https://www.researchgate.net/publication/370028776_AIDA_model_Research.

[24] L. G. Tornatzky and M. Fleischer, *The processes of technological innovation / SpringerLink*. 1990.

[25] J. Baker, “The technology-organization-environment framework,” pp. 231–245, 2012, doi: 10.1007/978-1-4419-6108-2_12.

[26] S. Chaveesuk, W. Chaiyasoonthorn, and B. Khalid, “Understanding the model of user adoption and acceptance of technology by thai farmers: a conceptual framework,” *ACM International Conference Proceeding Series*, pp. 279–285, 2020, doi: 10.1145/3396743.3396781.

[27] C. T. Muchangi, “Influence of farmer’s characteristics, agricultural extension and technology specific factors on adoption of organic farming technologies in Embu west sub county, Embu, Kenya,” *University of Nairobi*, p. 95, 2016, [Online]. Available: <http://erepository.uonbi.ac.ke/bitstream/handle/11295/97114/Chomba%20Titus%20Muchangi.pdf?sequence=1&isAllowed=y>.

[28] S. Yokamo, “Adoption of improved agricultural technologies in developing countries: literature review,” *International Journal of Food Science and Agriculture*, vol. 4, no. 2, pp. 183–190, 2020, doi: 10.26855/ijfsa.2020.06.010.

[29] S. R. Okuboyejo and A. O. Adejo, “Adoption of mobile technology by farmers in Southwest-Nigeria,” *International Journal of ICT Research and Development in Africa*, vol. 3, no. 2, pp. 32–44, 2012, doi: 10.4018/jictrda.2012070103.

[30] C. Yoon, D. Lim, and C. Park, “Factors affecting adoption of smart farms: The case of Korea,” *Computers in Human Behavior*, vol. 108, 2020, doi: 10.1016/j.chb.2020.106309.

[31] C. Takagi, S. H. Purnomo, and M. K. Kim, “Adopting smart agriculture among organic farmers in Taiwan,” *Asian Journal of Technology Innovation*, vol. 29, no. 2, pp. 180–195, 2021, doi: 10.1080/19761597.2020.1797514.

[32] M. Ali, N. Man, F. M. Muharam, and S. Z. Omar, “Factors influencing behavioral intention of farmers to use ICTs for agricultural risk management in Malaysia,” *Pakistan Journal of Agricultural Research*, vol. 33, no. 2, pp. 295–302, 2020, doi: 10.17582/journal.pjar/2020/33.2.295.302.

[33] S. Mohr and R. Kühl, “Acceptance of artificial intelligence in German agriculture: an application of the technology acceptance model and the theory of planned behavior,” *Precision Agriculture*, vol. 22, no. 6, pp. 1816–1844, 2021, doi: 10.1007/s11119-021-09814-x.

[34] A. Ajili, “Estimating the model of investigating attitude and intention in the usage of variable rate irrigation technology,” *American Journal of Experimental Agriculture*, vol. 2, no. 3, pp. 542–556, 2012, doi: 10.9734/ajea/2012/1267.

[35] P. Jain and Rekha, “Impact of demographic factors: technology adoption in agriculture,” *SCMS Journal of Indian Management*, vol. 14, no. 3, p. 93, 2017, [Online]. Available: <https://eresourcesptsl.ukm.remotexts.co/login?url=https://search-ebscohost-com.eresourcesptsl.ukm.remotexts.co/login.aspx?direct=true&db=bth&AN=125470371&site=eds-live>.

[36] F. R. von Veltheim and H. Heise, “The agtech startup perspective to farmers ex ante acceptance process of autonomous field robots,” *Sustainability (Switzerland)*, vol. 12, no. 24, pp. 1–18, 2020, doi: 10.3390/su122410570.

[37] P. Jaroenwanit, P. Phuensane, A. Sekhari, and C. Gay, “Risk management in the adoption of smart farming technologies by rural farmers,” *Uncertain Supply Chain Management*, vol. 11, no. 2, pp. 533–546, 2023, doi: 10.5267/j.uscm.2023.2.011.

[38] N. Adnan, S. M. Nordin, M. A. Bahruddin, and A. H. Tareq, “A state-of-the-art review on facilitating sustainable agriculture through green fertilizer technology adoption: Assessing farmers behavior,” *Trends in Food Science and Technology*, vol. 86, pp. 439–452, 2019, doi: 10.1016/j.tifs.2019.02.040.

[39] N. V. Bontsa, A. Mushunje, and S. Ngarava, “Factors influencing the perceptions of smallholder farmers towards adoption of digital technologies in eastern cape province, south africa,” *Agriculture (Switzerland)*, vol. 13, no. 8, 2023, doi: 10.3390/agriculture13081471.

[40] N. C. Irawan, Irham, J. H. Mulyo, and A. Suryantini, “Unleashing the power of digital farming: local young farmers’ perspectives on sustainable value creation,” *Agrariris*, vol. 9, no. 2, pp. 316–333, 2023, doi: 10.18196/agrariris.v9i2.239.

[41] G. Fox, J. Mooney, P. Rosati, V. Paulsson, and T. Lynn, “Towards an understanding of farmers’ mobile technology adoption: A comparison of adoption and continuance intentions,” 2018, [Online]. Available: <https://aisel.aisnet.org/amcis2018/AdoptionDiff/Presentations/17>.

[42] D. Zhou and Abdullah, “The acceptance of solar water pump technology among rural farmers of northern Pakistan: A structural equation model,” *Cogent Food and Agriculture*, vol. 3, no. 1, 2017, doi: 10.1080/23311932.2017.1280882.

[43] G. Fox, J. Mooney, P. Rosati, and T. Lynn, “Agritech innovators: A study of initial adoption and continued use of a mobile digital platform by family-operated farming enterprises,” *Agriculture (Switzerland)*, vol. 11, no. 12, 2021, doi: 10.3390/agriculture11121283.

[44] O. Victor, J. L. Nic, and L. Xiaomeng, “Factors affecting the adoption of mobile applications by farmers: An empirical investigation,” *African Journal of Agricultural Research*, vol. 17, no. 1, pp. 19–29, 2021, doi: 10.5897/ajar2020.14909.

[45] F. Caffaro, M. Micheletti Cremasco, M. Roccato, and E. Cavallo, “Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use,” *Journal of Rural Studies*, vol. 76, pp. 264–271, 2020, doi: 10.1016/j.jrurstud.2020.04.028.

[46] I. A. C. Jimenez, L. C. C. García, F. Marcolin, M. G. Violante, and E. Vezzetti, “Validation of a tam extension in agriculture: Exploring the determinants of acceptance of an e-learning platform,” *Applied Sciences (Switzerland)*, vol. 11, no. 10, 2021, doi: 10.3390/app11104672.

[47] Q. Dai and K. Cheng, “What drives the adoption of agricultural green production technologies? An extension of TAM in agriculture,” *Sustainability (Switzerland)*, vol. 14, no. 21, 2022, doi: 10.3390/su142114457.

BIOGRAPHIES OF AUTHORS

Amirul Asyraf Zahir is a master of science holder from the Universiti Sains Islam Malaysia, Faculty of Science and Technology where he majored in quantum computing. He is currently a graduate research assistant at the university, pursuing Ph.D majoring in quantum computing. His broad research interests cover topics relating to quantum computing, quantum entanglement, technology adoption, and digital transformation. He can be contacted at email: asyrafzahir@gmail.com.

Mohd Ilias M Shuhud is working in Universiti Sains Islam Malaysia as a senior lecturer. His academic qualification is Ph.D. His research area includes information science, information system (business informatics) and software engineering. He can be contacted at email: ilias@usim.edu.my.

Siti Munirah Mohd received her Ph.D from Universiti Kebangsaan Malaysia in quantum information processing. She is currently a senior lecturer at Universiti Sains Islam Malaysia. Her main research interests focus on quantum computing, quantum entanglement, applied mathematics, quantum physics and STEM-education. She can be contacted at email: smunirahm@usim.edu.my.

Shafinah Kamarudin received her Ph.D from Universiti Kebangsaan Malaysia. She is currently a senior lecturer at Universiti Putra Malaysia. Her main research interests focus on mobile technology, mobile application development, artificial intelligence and software engineering. She can be contacted at email: shafinah@upm.edu.my.

Azuan Ahmad received his Ph.D from Universiti Teknologi Malaysia. He is currently a senior lecturer at Universiti Sains Islam Malaysia. His main research interests focus on information systems (business informatics), computer communications, and computer security and reliability. He can be contacted at email: azuan@usim.edu.my.

Rossly Salleh is an expert in agricultural technology. He has vast experiences in agricultural technology and currently a chief operating officer at Kolej Universiti Agrosains Malaysia (UCAM). He can be contacted at email: rosslysalleh@yahoo.com.

Norita Md Norwawi is currently a professor at Universiti Sains Islam Malaysia. Her research interests focus on data mining, artificial intelligence and algorithms. She can be contacted at email: norita@usim.edu.my.