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This study aims to analyze the performance of various ensemble machine
learning methods, such as Adaboost, Bagging, and Stacking, in the context
of skin cancer classification using the skin cancer MNIST dataset. We also
evaluate the impact of handling dataset imbalance on the classification
model’s performance by applying imbalanced data methods such as random
under sampling (RUS), random over sampling (ROS), synthetic minority
over-sampling technique (SMOTE), and synthetic minority over-sampling
technique with edited nearest neighbor (SMOTEENN). The research
findings indicate that Adaboost is effective in addressing data imbalance,
while imbalanced data methods can significantly improve accuracy.
However, the selection of imbalanced data methods should be carefully
tailored to the dataset characteristics and clinical objectives. In conclusion,
addressing data imbalance can enhance skin cancer classification accuracy,

with Adaboost being an exception that shows a decrease in accuracy after
applying imbalanced data methods.
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1. INTRODUCTION

Skin cancer is a type of cancer characterized by the growth of abnormal skin lesions [1], such as
nodules, which can potentially threaten human health [2], [3]. Its causes vary, including exposure to toxic
substances from food, the environment, and excessive sunlight [4], [5]. Identifying and classifying types of
skin cancer is crucial for patient treatment and early detection. In the era of information technology, machine
learning can improve accuracy [6] and efficiency in classifying types of skin cancer. Skin cancer MNIST is a
valuable resource that contains various skin images to train classification models. Ensemble machine learning
techniques, such as adaboost, bagging, and stacking, are an interesting approach to improving skin cancer
classification accuracy.

Previous research has shown that the use of ensemble methods improves classification performance.
For example, in previous research, bagging and boosting with decision trees as base learners successfully
increased accuracy in classifying diabetes. The research results also show that using ensemble methods with
base learners such as naive bayes or random forest can achieve the best accuracy scores of up to 98.65% in
various contexts [6]. In another study, the bagging method utilizing random forest as the base learner
achieved the highest accuracy rate of 96.66%. Conversely, the decision tree algorithm yielded the lowest
accuracy rate, approximately 73.33% [7].
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Although previous research has explored ensemble machine learning techniques in various domains,
there has been no comprehensive study comparing the performance of various ensemble methods in the
context of skin cancer MNIST. Therefore, this is the aim of the research machine learning methods, such as
adaboost, bagging, and stacking, using various decision tree algorithms as base learners. This study will also
investigate the impact of handling dataset imbalance on the classification model’s performance by applying
methods such as random under sampling (RUS), random over sampling (ROS), synthetic minority over-
sampling technique (SMOTE), and synthetic minority over-sampling technique with edited nearest neighbor
(SMOTEENN). Through this comprehensive comparative analysis, this research will provide a deeper
understanding of the strengths and weaknesses of various ensemble machine learning methods in classifying
types of skin cancer. It is hoped that the research findings will serve as a valuable guide for practitioners and
researchers in efforts to enhance the effectiveness of machine learning technology [8] in diagnosing and
treating skin cancer.

2. METHOD

The research method consists of four stages, as shown in Figure 1. From Figure 1, it is known that
the research process starts from dataset collection to performance analysis. Each stage is meticulously crafted
to guarantee a thorough and methodical evaluation of the research goals.
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Figure 1. Research step

In this study, the skin cancer MNIST image dataset was used, which is available for download
from [9]. This dataset is structured into two main components: a folder containing skin images and clinical
data in CSV file format obtained [10]. Seven different types of images are identified and documented, as seen
in Figure 2, namely Melanocytic Nevi (nv), Melanoma (mel), Benign Keratosis-Like Lesions (bkl), Basal
Cell Carcinoma (bcc), Actinic Keratoses (akiec), Vascular Lesions (vasc), and Dermatofibroma (df). The first
and second folders contain various skin images taken from different individuals with various skin cancer
conditions. The CSV file contains clinical data relevant to the same patients as the skin images in the first and
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second folders. This clinical data consists of 10,015 entries with seven different attributes. A complete
explanation of these seven attributes can be found in Table 1.

Table 1. Attribute explanation

Attribute Value
lesion_id Unique identifier
image_id Unique identifier
dx “nv”, “mel”, “bkl”, “bec”, “akiec”, “vasc”, dan “df”
dx_type “histo”, “consensus”, “confocal”, dan “follow up”
age Patient’s age
sex “male” dan “female”
localization “scalp”, “ear”, “face”, “back”, “trunk”, “chest”, “abdomen”, “unknown”, “genetal”, “neck”, “hand”, “foot”,

“acral”, “upper extremity”, dan “lower extremity”

Actinic keratoses Basal Cell Carcinoma  Benign Keratosis-Like Lesions

Melanoma Vascular Lesion

T

Figure 2. Types of skin cancer

Data preprocessing is the initial preparation step before performing data analysis, aimed at
addressing potential issues that affect the results of data analysis. The first step is feature cleaning, where
missing values in the “age” column are replaced with the mean value of that column without missing values.
The next step is data transformation, where categorical data is converted into numeric format by replacing the
label “Male” with “0” and the label “Female” with “1”. Subsequently, the third step involves image resizing
to 100x75 pixels to reduce data complexity and prevent overfitting. The fourth step is feature extraction,
which involves extracting important information from complex or high-dimensional data [11]. The method
used is gray co-occurrence level matrix (GLCM), used to extract texture features [12], [13], which are used to
extract texture features such as energy, correlation, dissimilarity, homogeneity, and contrast [14]. These
features describe the texture characteristics in the image and aid in identifying desired regions in an image.
The formulas used for the five GLCM features can be seen in the following (1) to (5):

Energy = %5 5790 Py g (i,))? 1)
Correlation = ?’fo_l Z?’f;l Pyo(i,j) * % (2
Dissimilarity = ¥.Ni2 P, jli — jl ®)
Homogen (o, = Z?’z‘qgl Z;on_l (1+(i1_j)2) * (Pd,o (i,f)) (4)
Contrast = ¥, 16,1 « {215 " 7% Pag (i)} ®)

The final step in data preprocessing in this study is to address data imbalance resulting from
differences in the number of samples among different types of skin cancer. Some types of skin cancer are
more common than others, leading to an imbalance in the data count between classes, as shown in Figure 3.
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This imbalance has the potential to affect the performance of machine learning models in classifying skin
cancer images. Therefore, this study employs four data imbalance handling techniques: RUS, which enhances
the majority class samples [15], [16]. ROS, which augments the minority class samples [17], [18]. SMOTE,
which creates new minority class samples [19]-[21], and SMOTEENN, which combines the SMOTE
technique with edited nearest neighbor (ENN) to address overfitting issues [22], [23]. The implementation of
these techniques aims to improve the model’s performance and reliability in classifying skin cancer images.
Nevertheless, it is essential to compare the results with the case of no data imbalance handling.
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Figure 3. Skin cancer MNIST classes

Ensemble methods are machine learning techniques that combine multiple learning models into a
single, stronger model, allowing the final decision to be based on the combination of classifiers used [24],
[25]. One effective ensemble method is Adaboost, which assigns different weights to data [26], [27] and
incrementally improves the model [28], [29]. Bagging is used to reduce model sensitivity to data variations
by creating multiple models on randomly sampled training subsets [30]. Stacking uses a first-level base
learner to make predictions [31], [32], and these predictions are then used as training data for a meta-learner
[33]. Decision trees [33], [34] are machine learning algorithms used to classify data based on specific
conditions in the decision-making process.

Performance analysis is the process of evaluating a system or process to understand the extent to
which its performance meets predefined goals or standards. It is main goal is to identify potential issues,
understand existing trends, and design necessary improvements. Model performance evaluation is done using
metrics such as accuracy, precision, recall, and F1 score [35]. To calculate accuracy, precision, recall, and F1
Score, the following formulas are used:

TP+TN
Accuracy = —————— ®)
TP+FP+FN+TN
.. TP
Precision = 9)
TP+FP
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Recall = —~ (10)
TP+FN
F1 Score = 2 X (PrecisionxRecall) (11)

(Precision+Recall)

3. RESULTS AND DISCUSSION

The performance evaluation results of each classification method in classifying skin images on the
test data are presented in Tables 2 and 3. In Table 2, the classification performance results without data
balancing reveal that the decision tree algorithm achieved the highest accuracy, which is 74.6%. On the other
hand, among the ensemble methods, Adaboost obtained the highest accuracy, which is 73.5%. Adaboost is
effective in handling datasets with class imbalance.

Table 2. Comparison of classification performance of ensemble methods without imbalanced data handling

Method Performance
Accuracy (%)  Precision (%) Recall (%) F1-Score (%)
Decision Tree 74.6 68.1 74.6 70.6
Adaboost 735 70.2 735 70.5
Bagging 73 69.2 73 69.2
Stacking 70.2 62.3 70.1 61.7

Based on Table 3, it can be seen that imbalanced data handling methods have a significant impact on
the classification model’s performance. In some cases, such as using ROS with decision tree, bagging, and
stacking, accuracy reaches 100%, indicating a drastic improvement compared to the method without
imbalanced data handling. However, it's important to note that such high results can also be due to overfitting
for the minority class. On the other hand, there is a significant decrease in accuracy when the Adaboost
method is applied to certain imbalanced data methods, especially with the use of RUS and SMOTE. This
underscores the importance of selecting the appropriate imbalanced data method based on the dataset's
characteristics and classification goals. In the context of medical datasets like this, where high precision and
recall may be more important than overall accuracy, the choice of an imbalanced data method should be
carefully considered to meet clinical needs.

Table 3. Comparison of classification performance of ensemble methods without imbalanced data handling

Imbalanced data handling method Method Performance

Accuracy (%)  Precision (%) Recall (%) F1-Score (%)

RUS Decision tree 44 441 44 43.3

Adaboost 37.8 38.7 37.8 35.8

Bagging 50.9 50.8 50.9 50

Stacking 47.2 475 47.2 445

ROS Decision tree 100 100 100 100

Adaboost 54 51.4 54 51.1

Bagging 99.9 99.9 99.9 99.9

Stacking 99.8 99.8 99.8 99.8

SMOTE Decision tree 85.7 85.5 85.7 85.5

Adaboost 55.2 54.2 55.2 53.1

Bagging 92.7 92.7 92.7 92.6

Stacking 90.5 90.6 90.6 90.2

SMOTEENN Decision tree 90.5 90.4 90.5 90.4

Adaboost 49 49 49 45.8

Bagging 95.3 95.3 95.3 95.3

Stacking 97.6 97.6 97.6 97.6

The results of the research indicate that the performance classification model in the skin cancer
MNIST dataset is significantly affected by data imbalance. High accuracy may be reached using Ensemble
Methods such as ROS. However, it should be emphasized that this could be related to potential overfitting of
the minority class. The importance of selecting the right imbalanced data method depends greatly on the
dataset's characteristics and classification goals. In a medical dataset context, high precision and recall may
be more relevant than overall accuracy. Therefore, the choice of imbalanced data method should be carefully
considered according to clinical needs. From the classification results in Tables 2 and 3, it can be concluded
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that handling data imbalance can improve accuracy [36]-[39]. However, imbalanced data methods do not
seem to affect the Adaboost method, as evidenced by the decrease in accuracy after using imbalanced data
methods with Adaboost.

4. CONCLUSION

The results of this study show that the decision tree algorithm achieved the highest accuracy of 74%
on the imbalanced dataset, while in the ensemble methods, Adaboost reached the highest accuracy of 73.5%.
Adaboost has proven to be effective in dealing with datasets with class imbalance. However, there is a
significant impact of data imbalance on the classification model’s performance. The application of
imbalanced data methods such as ROS with decision tree, bagging, and stacking resulted in accuracy
improvements of up to 100%, which may be related to potential overfitting on the minority class. However,
Adaboost experienced a decrease in accuracy when imbalanced data methods were used, especially with
RUS and SMOTE. This emphasizes the importance of carefully selecting imbalanced data methods based on
dataset characteristics and classification goals, especially in the context of medical datasets where precision
and recall may be more relevant than accuracy. In conclusion, handling data imbalance can improve
accuracy, but the choice of imbalanced data methods should be carefully considered according to clinical
needs, with Adaboost being an exception that shows a decrease in accuracy after applying imbalanced data
methods. Further studies should explore the underlying reasons for Adaboost’s decreased performance with
certain imbalanced data methods and investigate alternative techniques to mitigate this issue. Additionally,
examining the impact of other Ensemble Methods and more sophisticated data balancing techniques on a
wider range of medical datasets could provide deeper insights into optimizing classification performance
while maintaining clinical relevance.
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