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Identifying the genus of fungi is known to facilitate the discovery of new
medicinal compounds. Currently, the isolation and identification process is
predominantly conducted in the laboratory using molecular samples.
However, mastering this process requires specific skills, making it a
challenging task. Apart from that, the rapid and highly accurate
identification of fungus microbes remains a persistent challenge. Here, we
employ a deep learning technique to classify fungus images for both
balanced and imbalanced datasets. This research used transfer learning to
classify fungus from the genera Aspergillus, Cladosporium, and Fusarium
using InceptionVV3 model. Two experiments were run using the balanced
dataset and the imbalanced dataset, respectively. Thorough experiments
were conducted and model effectiveness was evaluated with standard
metrics such as accuracy, precision, recall, and F1 score. Using the trendline
of deviation knew the optimum result of the epoch in each experimental
model. The evaluation results show that both experiments have good
accuracy, precision, recall, and F1 score. A range of epochs in the accuracy
and loss trendline curve can be found through the experiment with the
balanced, even though the imbalanced dataset experiment could not.
However, the validation results are still quite accurate even close to the
balanced dataset accuracy.
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1. INTRODUCTION

Fungus is one of many microorganisms with high biodiversity characteristics that play a crucial role
in varying aspects of human life. Its various benefits include diverse sectors ranging from medicinal, and
pharmaceutical, to the food industry. For instance, the Aspergillus genus is known to be useful in fabricating
natural products in the form of bioactive compounds [1] and becomes one of the main sources of microbial
organic acid production in the global context, namely citric acid [2]. Next, there are also other equally
important fungus genera, such as Cladosporium. This indoor and outdoor living genus is known to have
versatile potentiality because it can produce compounds such as anticancer, antimicrobial, and antiviral
agents [3]. Lastly, the food industry has made extensive use of Fusarium genera as one of the primary sources
of mycoprotein-rich foods [4]. Therefore, it is essential to perform a fast, accurate, and energy-efficient
visual identification task to differentiate among these specific fungi.
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Despite the wide range of benefits of fungi for human needs, the process of rapid and accurate
identification of fungus genera remains a challenge to date. Conventionally, the identification of fungus
genera can be based on morphological identification of macroscopic and microscopic characteristics [5]. In
addition, there is also another method on the molecular level based on rDNA sequence data from the Internal
Transcribed Spacer (ITS) region which results in higher accuracy up to the fungus species identification [6].
While the conventional approach is commonly used, it exhibits significant drawbacks, including the
prerequisites for specialized skills in the manual classification of fungus images. Furthermore, the manual
classification of fungus images is time-consuming, spanning multiple days to complete particularly when
dealing with microbes in large numbers. The process of identifying microbes based on morphology, which
involves microscopic observation which is simple and fast. Yet, the high variability in the morphological
characteristics of microbes can increases the difficulty of the identification process, necessitating the
involvement of seasoned experts with specialized knowledge about various fungal forms. For the reasons
stated above a novel and reliable approach are needed to identify fungus based on their morphological
characteristics. Rather than replacing the entire process of microbial identification, the primary goal of our
experiment ought to be aiding microbiologists in the future discovery of new species of microfungus.

Until now, researchers have put their effort into improving the performance of fungus classification.
A widely employed strategy for overcoming this challenge involves using artificial intelligence technology.
The artificial intelligence approach has been proven to provide benefits in terms of time efficiency, and cost-
effectiveness, and does not require specialized training skills, making it intuitively accessible even to non-
experts. Several artificial intelligence techniques are known for their capability in assisting the process of
identifying microorganisms so that they can assist in the recognition of object images of microorganisms. In
previous studies, feature extraction of fungus-based images has been carried out through classical machine
learning methods [7] and deep learning methods [8], [9].

Wu et al. [7] used the Adaptive Robust Binary Pattern (ARBP) method to detect hyphae in fungal
keratitis images. With an accuracy of 99.74%, it could accurately differentiate aberrant corneal pictures from
normal corneal images. Using data augmentation and picture fusion, Liu et al. [9] described that the AlexNet
framework provides a perfect trade-off between the diagnostic performance and the computational
complexity, with a diagnostic accuracy of 99.95%. The aforementioned studies were mostly done on a visual
classification task utilizing traditional machine learning methods resulting in decent testing accuracy results.
Some of the previous works only conducted on a single fungi species which exhibits a comparatively lower
variance value in contrast to the multi-class classification task. Whereas, in this study, a classification
procedure has been done on three class fungi genera.

In this paper, we implemented one of the deep learning techniques namely InceptionV3 architecture
because it produces greater performance on image classification tasks and better use of processing resources
[10]. To improve the studies, this study also analyzed the epochs used during the training and validation
phases of the model with two types of data: balanced and imbalanced. This was done to determine the
computational efficiency and convergence behavior, enabling us to optimize the training process. As a result,
the performance of the two model based on different data types was assessed based on their epoch analysis.
Thus, this study proposes a novel method that utilizes deep learning to assist in the morphological
identification of microfungi. Additionally, it includes a performance analysis to evaluate the epochs used for
training the model, aiming to improve the model's time and computational efficiency.

2. METHOD

One of the cutting-edge and well-liked technologies for classification is deep learning, a technology
that sets trends and can provide creative solutions for future projects [11], [12]. It is capable of categorization
using pictures or videos. It is a type of machine learning that uses neural networks. It contains numerous
hidden layers with the capacity to automatically pick up on data representations or properties [13]. Deep
learning's benefit is its capacity for learning transfer [14], [15]. Transfer learning is reusing a model that has
already been trained for a new job that often has a smaller and limited dataset [16], [17] or it seeks to adapt
previously learned knowledge to new knowledge by using current models [18]. Transfer learning's primary
goal is to improve target learners' performances by utilizing information from related but unrelated source
domains.

The pre-trained model has learned to extract pertinent spatial characteristics or representations from
the input data after being trained on a sizable dataset. These learned features then be used as an initial point
for a new model that is trained on a smaller and limited dataset. This strategy can improve the new target
model's accuracy and effectiveness since it focuses on learning the specifics of the new task without
requiring the model to be trained from scratch [19]. In this study, the Inception\VV3 network is the model of
choice for Transfer Learning. The pre-trained model, which was previously trained using the ImageNet
dataset, is provided by the Keras framework.
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2.1. Data preparation

To complete this research, data must be collected using three different methods: interviews,
observation, and literature review. The information utilized is a set of three genera's worth of fungal
microscopic image data from the Research Organization for Life Sciences and Environment, BRIN. A
sample of the dataset's microscopic photos of fungi is shown in Figures 1(a)-(c).
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Figure 1. A fungal microscope image from the dataset: (a) Aspergillus, (b) Cladosporium, and (c) Fusarium
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The image data used consists of balanced data and imbalanced data. The total of balanced fungus
images is 510 images and each genus has 170 data. While the total of imbalance fungus images is 732
images. Aspergillus has 372 images, Cladosporium has 180 images, and Fusarium has 180 images.
Additionally, the images are enlarged to 300x300 pixels, improved with the following settings: rescale 1/255,
the rotation range 30, and validation split 0.1, then the dataset is separated into two categories: training data
and testing data, which are shown in Tables 1 and 2, respectively.

Table 1. First dataset (balanced dataset) Table 2. Second dataset (imbalanced dataset)
Genus Training Data  Testing Data Total Data Genus Training Data  Testing Data Total Data
Aspergillus 150 20 170 Aspergillus 352 20 372
Cladosporium 150 20 170 Cladosporium 170 20 190
Fusarium 150 20 170 Fusarium 166 20 186
2.2. Modeling

This study will be built using InceptionV3. It is a deep neural network architecture commonly used
for image analysis and object detection tasks that was originally developed by Google in 2015 as a module
for GoogLeNet [20], [21]. It is the third variant of the original Inception Convolutional Neural Network that
was first proposed in 2014. This model comprises 48 layers of deep networks, but it divides huge convolution
into a smaller grid and uses multiple-size filters along with it [22]. This Architecture was built to improve the
accuracy and computational efficiency of image classification tasks, specifically in large-scale visual
recognition challenges. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) dataset, which
includes 1.2 million photos from 1,000 distinct item categories, achieved state-of-the-art performance in
2015. In terms of the error rate of the image classification task, InceptionVV3 achieved a top-5 error rate of
3.46%, which was more excellent than the previous BN-Inception state-of-the-art architecture of 4.9%
accuracy. An architectural illustration of InceptionV3 can be seen in Figure 2. InceptionVV3 was trained in the
study with the sequential model and has some parameters. Parameters of the sequential model used during
training can be seen in Table 3.

Convolution [ Fully Connected
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Figure 2. lllustration of InceptionV3 architecture [23]
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Table 3. Parameters of the sequential model training
Parameters  Type/Value

Optimizer Adam
Epoch 150

Batch size 32

Activations Softmax
Dropout 0.15

2.3. Evaluation

The evaluation stage requires the classification model performance and the trendline of deviation
method for data analysis. The trendline of deviation method is used for data analysis to give the range
optimum epoch position. While, the model's performance should be evaluated in terms of accuracy,
precision, recall, and F1 score. These metrics, which include true positive (TP), true negative (TN), false
positive (FP), and false negative (FN), are created using information from the confusion matrix based on
(1)-(4) [24]. TP stands for the number of true positive predictions, TN for true negative predictions, FP for
false positive predictions, and FN for false negative predictions [25], [26].

TP+TN
Accuracy = ————— @
TP+FN+TN+FP

.. TP

Precision = 2
TP+FP
TP

Recall = 3)

TP+FN

recall x precision

F1 Score =2x 4)

call +precision

3. RESULTS AND DISCUSSION

The result of each training process is the model to be used during testing. Each model is then used in
the testing stage to see each performance. Testing is done using each of the 20 images for each genus class.
Based on the confusion matrix generated in testing using the first model. The first model is generated by the
training process using balanced data, namely 150 training images for each class. There is no tendency for
data to enter certain classes to be greater than in other classes. The performance of the first model shows that
the highest precision is obtained by the Cladosporium and Fusarium class, which is 0.85, meaning that
Cladosporium and Fusarium get the highest level of accuracy in making identification, while Aspergillus gets
a Precision value of 0.80 which is the lowest value compared to other classes, which means that Aspergillus
gets the lowest level of accuracy in making identification correctly.

Aspergillus got the highest recall value, which was 1, meaning that the success rate of the model in
re-finding the Aspergillus class was high compared to other classes, such as the Cladosporium class, which
only got a recall value of 0.74. Tables 4 and 5 show the confusion matrix and the results of the first
experiment, respectively.

Table 4. The confusion matrix of 1st experiment Table 5. The performance of 1st experiment
Class Aspergillus  Cladosporium  Fusarium Class Precision Recall  Accuracy  F1 Score
Aspergillus 16 3 1 Aspergillus 0.80 1 0.80 0.89
Cladosporium 0 17 3 Cladosporium 0.85 0.74 0.85 0.79
Fusarium 0 3 17 Fusarium 0.85 0.81 0.85 0.83

Furthermore, training is carried out using the second model. The second model is generated by the
training process using imbalanced data for each class. Data testing each uses 20 images per class. The
resulting confusion matrix shows that the Aspergillus class obtained the highest precision with a value of
0.95, while the class with the lowest precision was obtained by Cladosporium and Fusarium, which was 0.80.
The Aspergillus class obtained the highest recall value, with a value of 0.95, while the Cladosporium class
obtained the lowest recall, with a value of 0.76. Tables 6 and 7 show the confusion matrix and the results of
the second experiment, respectively.
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Table 6. The confusion matrix of 2nd experiment Table 7. The performance of 2nd experiment
Class Aspergillus  Cladosporium  Fusarium Class Precision Recall ~ Accuracy  F1 Score
Aspergillus 19 1 0 Aspergillus 0.95 0.95 0.95 0.95
Cladosporium 1 16 3 Cladosporium 0.80 0.76 0.80 0.78
Fusarium 0 4 16 Fusarium 0.80 0.84 0.80 0.82

The evaluation metrics results for the two experiments are shown in Table 8. It shows that the
balanced dataset has precision, recall, accuracy, and F1 score of 0.83, 0.85, 0.83, and 0.84 respectively.
While the imbalanced dataset has precision, recall, accuracy, and F1 score of 0.85 respectively.

Table 8. Evaluation metrics for the fungus classifier's trained InceptionV3 model

Inception\VV3Model with Precision  Recall Accuracy F1 Score
Balanced Data 0.83 0.85 0.83 0.84
Imbalanced Data 0.85 0.85 0.85 0.85

However, we do not know whether the epoch used is sufficient or not. And then, we analyzed the
accuracy and loss curves for each model. Figure 3 shows the curves of balanced data with accuracy in
Figure 3(a) and loss in Figure 3(b). While Figure 4 shows the curves of imbalanced data with accuracy in
Figure 4(a) and loss in Figure 4(b).
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Figure 3. Accuracy (a) and loss (b) curve of balanced data
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Y Accuracy Curve of Imbalanced Data
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Figure 4. Accuracy (a) and loss (b) curve of imbalanced data

Both models produce curves that tend to be similar. There is a gap between performance during
training and validation. The training process was carried out until epoch 150 and then, was carried to the
accuracy and loss deviation between training and validation. Furthermore, we made the trendline of accuracy
and loss deviation. From the trendline, the value of R? is obtained to determine the optimum epoch range for
each model. Figure 5 shows the trendline curve of balanced data with an accuracy trendline in Figure 5(a)
and a loss trendline in Figure 5(b). While Figure 6 shows the trendline curve of imbalanced data with an
accuracy trendline in Figure 6(a) and a loss trendline in Figure 6(b).

The trendline of deviation succeeded in deciding the optimum epoch range for each model. It shows
that in the balanced dataset, there is a range of epochs between 106 epochs for the loss trendline curve to 113
epochs for the accuracy trendline curve which gives the optimum results. While accuracy and loss trendline
of imbalanced data did not have the end of the curve, so it could not find a range of epochs.
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Figure 5. Accuracy (a) and loss (b) trendline curve of balanced data
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Figure 6. Accuracy (a) and loss (b) trendline curve of imbalanced data
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4. CONCLUSION

A deep learning InceptionVV3-based fungus classification model was created in this research. The
deep learning method is considered more efficient than using the classic machine learning method. This study
established a model for fungus classification of the Aspergillus, Cladosporium, and Fusarium genera. Two
models were produced: a model with imbalanced data and a model with balanced data. The results obtained
are the balanced dataset has precision, recall, accuracy, and F1 score of 0.83, 0.85, 0.83, and 0.84
respectively. It is capable to find a range of epochs between 106 epochs for the loss trendline curve to 113
epochs for the accuracy trendline curve which gives the optimum results. While the imbalanced dataset has
precision, recall, accuracy, and F1 score values of 0.85 respectively. It could not find an epoch range in the
accuracy and loss trendline curve, but the validation results are still quite accurate even close to balanced data
accuracy. In future studies, added new genus and expand dataset using InceptionV3 architecture for fungus
classification. Then, try other deep learning architectures with the same datasets in this paper such as ResNet-
50, VGG-16, and DenseNet-201.
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