Computer Science and Information Technologies
Vol. 5, No. 2, July 2024, pp. 99~111
ISSN: 2722-3221, DOI: 10.11591/csit.v5i2.pp99-111 a 99

Implementation of automation configuration of enterprise
networks as software defined network

Lindo Prasetyo, Ifan Prihandi, Muhammad Rifqi, Rahmat Budiarto
Department of Informatics, Faculty of Computer Science, Mercu Buana University, Jakarta, Indonesia

Article Info ABSTRACT

Article history: Software defined network (SDN) is a new computer network configuration
. concept in which the data plane and control plane are separated. In Cisco

Received Jun 27, 2023 system, the SDN concept is implemented in Cisco Application Centric

Revised Dec 2, 2023 Infrastructure (Cisco ACI), which by default can be configured through the

Accepted Jan 10, 2024 main controller, namely the Application Policy Infrastructure Controller

(APIC). Conventional configuration on Cisco ACI creates problems, i.e.: the

large number of required configurations causes the increase of time required
Keywords: for configuration and the risk of misconfiguration due to repetitive works.
This problem reduces the productivity of network engineers in managing

A.nSIble Cisco system. In overcoming these problems, this research work proposes an
Cisco ACI _ automation tool for Cisco ACI configuration using Ansible and Python as an
NEt_’VO_rk C_onflguratlon SDN implementation for optimizing enterprise network configuration. The
Optimization SDN is implemented and experimented at PT. NTT Indonesia Technology
Software defined network network, as a case study. The experimental result shows the proposed SDN

successfully performs multiple routers configurations accurately and
automatically. Observations on manual configuration takes 50 minutes and
automatic configuration takes 6 minutes, thus, the proposed SDN achieves
833.33% improvement.

This is an open access article under the CC BY-SA license.

©Nole

Corresponding Author:

Rahmat Budiarto

Department of Informatics, Faculty of Computer Science, Mercu Buana University
Jakarta 11650, Indonesia

Email: rahmat.budiarto@mercubuana.ac.id

1. INTRODUCTION

Software defined network (SDN) is a new concept for changing networks [1]. It is a network
approach with the principle of separating the data plane from the control plane in contrast to conventional
networks [2], [3]. It makes the production networks becoming programmable, more flexible and fast in
supporting virtualized servers and storage in modern data centers [4], [5]. SDN does this by extracting the
control plane functions from forwarding devices such as switches and routers and detaching these functions
on the SDN controller [6]. Currently there are many SDN solutions from several vendors such as Cisco
Application Centric Infrastructure (ACI), Vmware NSX, Cisco SD-WAN, and Fortinet SD-WAN [7]. The
ACI is one of the concepts in SDN by implementing architecture under application requirements. This
architecture aims to modify, optimize, and accelerate the application development cycle [8]. Cisco ACI is
controlled by an SDN controller known as the Application Policy Infrastructure Controller (APIC) [7].

In configuring the Cisco ACI, technicians only need to access APIC as the main controller, which
has the characteristics of using a web user interface (a point and click graphical user interface that can only
perform one configuration at a time) and has 2-layer and 3-layer configuration types. When many
configurations are required, the characteristics of Cisco ACI may cause new problems such as the time

Journal homepage: http://iaesprime.com/index.php/csit

https://creativecommons.org/licenses/by-sa/4.0/

100 a ISSN: 2722-3221

required for configurations and repetitive works will increase the risk of misconfiguration. This problem
reduces the level of effectiveness of network technicians in configuring Cisco ACI.

Many research works have been carried out, such as Siddartha and Praveen [9] that discuss
operating system (OS) upgrading progress automation on Cisco SD-WAN controller devices. In this study,
Python was used as an automation tool that utilizes the representational state transfer application program
interface (REST API) features provided by the Cisco SD-WAN controller device. The experimental results of
this study show that the proposed method can speed up the OS upgrading process on Cisco SD-WAN
controller devices when compared to manual upgrades. Further related research was carried out by Fauzi et
al., [10], which discuss the automation of the enhanced interior gateway routing protocol (EIGRP) routing
protocol configuration on Cisco routers. In this study, Ansible was used as a tool to automate the
configuration of router devices by utilizing the Secure Shell (SSH) feature provided by Cisco routers. Based
on the existing problems and referring to previous related researches, this research will automate the Cisco
ACI configuration using Ansible and Python programming language. Ansible will be used to develop the
automation tool that removes some repetitive work on servers, while Python is used for implementing the
SDN, because it has a very clear, complete, and easy to understand programming code. Therefore, this paper
contributes towards the development of automation method for CISCO ACI configurations to assists network
administrator in increasing their productivity through SDN implementation.

2. THEORITICAL BACKGROUND
2.1. Cisco ACI

Cisco ACI is a data center architecture designed to meet the requirements of today's traditional
networks, and to meet the emerging demands of new computing trends and business factors deployed in
networks and is based on the Cisco Nexus 9504 and Cisco Nexus C9336'FX2 equipment that allows one to
Connect to MiCC components with a speed up to 100 Gbps and more. SDN has garnered a lot of attention in
the networking industry over the past few years because it promises to be a more agile and programmable
network infrastructure. Cisco ACI not only addresses the challenges of network agility and programmability
that software-based overlay networks are trying to address, but also provides solutions to new challenges that
SDN technology cannot currently address. The main controller application on SDN, namely APIC, is
responsible for all tasks that enable traffic transportation, which includes fabric activation, switch firmware
management, and configuration of network policy installations [11], [12].

2.2. Ansible

Ansible is an open-source automation tool for managing and configuring computers based on the yet
another markup language (YAML) language. Red hat and Ansible are developed by the open-source
community. Ansible is designed to handle complex infrastructure rather than a single case with the
advantages of being easier in the setup process, easy to manage, low cost of up to 100 nodes using Ansible
Tower or free using ansible web executable (AWX) Cloud. The creation of the Ansible scripts is easy for
System Administrators and operators to understand due to the use of YAML Configuration Files, which is
administrator oriented. The configuration is easy to understand and and to distribute remotely using the SSH
so that server setup does not require additional commands, and server setup process is faster [13], [14].

Ansible is executed using a script called playbook and consists of modules. Each module represents
a logical command with customizable arguments and execution parameters. Modules are Python scripts that
run on the target machine. Ansible has a domain specific language (DSL) for describing modules in
playbooks. The DSL allows the use of variables for example the set fact module can assign values to
variables. Values in other variables can look like {{var_name}} which will be replaced with var_name
values during module execution [15].

2.3. WSL

Windows subsystem Linux (WSL) was released in 2016 as a feature of Windows 10 that allows the
distinction of running Linux distributions through a kernel compatible with a Linux interface [16]. The WSL
allows Linux developers to run Linux environments on Windows, including most of the command line tools,
utilities, and applications directly in windows, without any modifications, and without virtual machine (VM)
overhead [17]. WSL can run executable and linkable format (ELF) binaries natively. The subsystem provides
a kernel interface and makes it possible to run unmodified ELF64 executables [18].

2.4. YAML
YAML is very smart, human friendly and ideal for data serialization for all programming languages
[19]. YAML is a format for data serialization with a computer data structure storage process for use later.

Comput Sci Inf Technol, Vol. 5, No. 2, July 2024: 99-111

Comput Sci Inf Technol ISSN: 2722-3221 a 101

However, unlike formats that serialize data structures to a stream of raw binary data (e.g., MP3 audio and
JPEG images), YAML serializes data structures to plain text [20]. YAML is widely used in data exchange,
serialization, and configuration of applications or environments and basically a superset of JSON with a
lightweight syntax that is optimized for human readability and editing, and has a type system consisting of
scalars (numbers, strings, and booleans) and collections (lists and maps) [21].

2.5. REST API

Representational state transfer (REST) is an architecture used to design services that are consumed
across multiple platforms and environments to support interoperability and the World Wide Web (WWW).
The application programming interface of the REST (REST API) is broadly part of the microservices design.
Research efforts were made to extend the REST architecture to support distributed systems [22], [23]. The
REST API is designed for web services that focus on system resources such as transfers and requests for data
using HTTP with GET, POST, PUT, or DELETE commands which are used for application development
because they can be used by many programming languages and many platforms [24], [25].

3. METHOD

This study creates an automation tool for Cisco ACI configuration and implement the tool as an
SDN. Experiments are carried out to measure the performance of the proposed tool whether it is as expected
and to compare the time required for manual configuration and automatic configuration using the Cisco ACI
configuration automation tool. Manually configuring Cisco ACI has problems, including consumed time for
configuration and configuration errors (human error). Thus, automation through SDN implementation may
reduce the problems. The steps in this study is depicted in Figure 1.

Data Collection

Automation Tool Design

= Observation Formulation of the Problem

4

. « Ul Automation Tool Design
=« Interview

. . + Excel Template Design
« Literature Review

« Excel Converter Design

« Anisble Playbook Design

Making Automation Tool

Review

« Create Task

» Review Automation Tool
r

v
Conclusion and « Aut tion Tool Testing Tool Automation Implementation
Recommendation N

« Feature Testing « Create Ul

« Time Efficiency ¢ « Create Excel Template

« Create Excel Converter

o « Create Ansible Playbook

Figure 1. Research steps

Implementation of automation configuration of enterprise networks as software ... (Lindo Prasetyo)

102 a ISSN: 2722-3221

3.1. Data collection

At the data collection stage, two methods were used, namely,
a) Literature study

Literature study was conducted to collect data in the form of information or theories related to this
research, which were obtained through books, journals and the Internet include: Cisco ACI, Ansible, Python,
WSL application, YAML, Microsoft Excel, CLI and REST API.
b) Observation

Data collection is carried out by making direct observations on the production network at PT. NTT
Indonesia Technology consisting of Cisco ACI devices and interviews with network engineers.

3.2. Formulation of the problem
At the problem formulation stage, we carry out a requirement analysis to understand the existing
system in order to develop its information system. At this stage an analysis of the running system is carried
out at PT. NTT Indonesia Technology in the production network configuration. The current business flow is
described as shown in Figure 2.
a) The network technician prepares a list of configurations that will be entered into the Cisco ACI device
in the form of an Excel file.
b) The network technician opens a browser application to open the Cisco ACI device web to configure.
c) Network Technicians configure Cisco ACI devices via the web based on the list of configurations
contained in the Excel file.
d) Network technician validates the configuration that has been entered into the Cisco ACI device with a
list of configurations contained in the Excel file.

9 -

-l--~'li :
'r..-i

Figure 2. Current business process flow

3.3. Automation tool design

At this stage, the design of a network configuration automation tool is carried out. The automation
tool is designed by mimicking the existing real production network of PT. NTT Indonesia Technology. The
design of existing business processes in the automation tool is illustrated in Figure 3.

Figure 3 shows the planning of business processes in the Cisco ACI configuration automation tool,
namely, the network technician or user must create a configuration list in the form of an Excel file and then
the user only needs to run the Cisco ACI configuration automation tool. The created Excel file must be
converted from Excel format to YAML form because only the YAML data form can be used by Ansible.
After that, the user can automatically configure according to the configuration selected on the menu.
Furthermore, the Cisco ACI device will send results in the form of a REST API response that the user can see
in the terminal display in the Automation tool.

Comput Sci Inf Technol, Vol. 5, No. 2, July 2024: 99-111

Comput Sci Inf Technol ISSN: 2722-3221 a 103

Save configuration|
to Excel file

of the Excel file for the APIC

‘Enter the name
of the

Check if

the Excel file Excel

________________ W TR ST IS NN SRR MUTRATSNSS SNSRI SRONSEITASE Sl S e TR]
I User o Automation System | Cisco APIC/ACI I
|
h | |
|
Iy | |
: I Have | Rreceiv; me"' |
0 configuration list
Configuration V"’E"cu“Tool 1] System i:s:n':d" Yes | v |
| Flee I 0 YAMLY, | l |
|
h l Apply th .
| N \pply the
8 Iy No Enter the | configuration to the) |
| IP address system
| e I I ‘Convert Excel of the APIC | |
an Excel template | | 2 '°‘th'-' | 1 |
| I 'om the ment
| | I Send the response I
h Enter the | result |
| Enter the name credentials | |
|
| |
|
| |
| |
| |

exists configuration

I Display an error ”
to the user

Yes
¥

nter ‘yes' or ‘no"

to proceed

Convert the Excel
file to YAML

with validation

heck if the'
conversion is
successful

a validation
check

|

|

|

|

|

|

|

|

| Display an error %

| to the user

|

| Yes Yes
| ¥

| e mﬁfonvened [Execute the Ansible|
| 52 playbook
|

|

|

|

|

|

|

|

|

|

|

|

Show converted Send the
result to the user list t
Cisco APIC

/ Display the ;

to the user

Is the
configuration

Figure 3. Proposed business process

3.5. Automation tool implementation

At this stage, the creation of a network configuration automation tool is carried out at PT. NTT
Indonesia Technology in accordance with the results of the system design. The tool is made by creating a
script on Ansible related to network configuration on Cisco ACI.

3.6. Testing and evaluation

At this stage testing of network configuration automation tools is conducted by testing all system
functionality. Testing is carried out by ensuring the configuration entered the Cisco ACI system matches the
data based on the Excel file. At this stage, an evaluation is carried out regarding the results of the research
that has been carried out by comparing the manual and automatic network configuration processes.

4. RESULTS AND DISCUSSION
4.1. Result

The experiment results are presented along with steps of implementation. The first part is preparing
configuration parameters as data input. The output of this process is configuration table in Excel format.
Second part is automation tool implementation result, i.e.: the configuration time measurement and
configuration accuracy.

Implementation of automation configuration of enterprise networks as software ... (Lindo Prasetyo)

104 a ISSN: 2722-3221

4.1.1. Data preparation
Before implementing the proposed automation tool, the first thing that must be considered is to
prepare the data to be used. The data is in the form of an Excel template file containing the configuration to
be automated. The steps regarding how to fill in the Excel template file are as follows.
— Prepare files that are in the "input_data" folder found on the GitHub that was created.
— The Excel template has several sheets; each sheet which includes the configuration will begin with the
word "SEC_" as shown in Figure 4.

SEC_System_Setting | SEC_Admin | SEC_Fabric_Discovery | SEC_Fabric_Paolicies | SEC_Fabric_Access_Policies SEC_Tenant_1 SEC Tenant_2

Figure 4. Configuration section

— Inthe "index" sheet there is information regarding the list of configurations that can be automated and
show the location of the configuration sheet. The "index" sheet can help the user to find the location of
the configuration sheet. For example, when SNMP Policy configuration is to be performed, the user
must enter the configuration on the “SEC_FABRIC POLICIES” sheet.

— Furthermore, the configuration sheet will have the format shown in Figure 5. It can be seen in the
information section starting with "#". Each of these sentences can be interpreted only as information to
help the user to find the configuration to be entered. Figure 5 shows the tables for Fabric Setup and
Fabric Membership Pod configurations. There are "key_start" and "key_end" which are delimiters for
the configuration table, so it must be ensured that all configurations are carried out between the
"key_start" and "key_end" rows.

A A B C D E
1 # FABRIC DISCOVERY

2

M & Pod Fabric Setup

.\ # Fabric = inventory > Pod Fabric Setup Policy

5 |key_start

& |Pod ID TEP Pool

7

8 |key_end

9

10

“
ivQ # Fabric > Inventory > Fabric Membership

13 |key_start

14 [Name Serial Number Naode 1D POD Role

15 |LEAF-201 TEP-1-101 201 1 leaf

16 |LEAF-202 TEP-1-102 202 1 leaf

17 |SPINE-101 TEP-1-103 101 1 spine

18 (key_end

19

Figure 5. Configuration sheet

— Next, in the available table, we will find several configuration tables that are optional or drop down. So,
it must be ensured that the user only selects the available options, as can be seen in Figure 6.

0 |# Attach Security Domains and Set read/write previledge

1 |key_start
2 |Username Security Domain User Role Access Type
3|lindo VMM_Security_Domain
4 [key_end "
- access-admin
5 admin
c Fabric-admin

Figure 6. Configuration table

Comput Sci Inf Technol, Vol. 5, No. 2, July 2024: 99-111

Comput Sci Inf Technol ISSN: 2722-3221 a 105

4.1.2. Automation tool implementation result
At this stage, the procedure for using the Cisco ACI automation configuration tool using Ansible
and Python will be explained. In running the automation tool, system requirement is needed, i.e.: the WSL
software. The following are the steps to run the Cisco ACI configuration automation tool.
— The first step that needs to be taken is to download the automation tool from Github. The file is in the
ZIP version, which can be seen in Figure 7.

main ~ 1 Do Go to file Add file ~ <{> Code ~

Local
Lindo Prasetyo add tenant configuration

P Clone
input_data

methods HTTPS SSH GitHub CLI

.gitignore https: //github.com/mangdodo®d7/cisco-aci-auta
README.md

sible.ct
R) Open with GitHub Desktop

main.py

i D load ZIP
requirements.txt m Owrhoa

Figure 7. Download the Cisco ACI automation configuration tool

— After downloading the Cisco ACI automation configuration tool, extract the file and move it to the
/home/user WSL folder that has been installed.

— Next, open the template_empty.xlsx file in the cisco-aci-automation-TA-lindo/input_data/ folder. The
layout of the configuration file can be seen in Figure 8.

home » lindo » cisco-aci-automation-TA-lindo » input_data

Name - Date medified Type

iE empty_template 574 01 AM Microsoft Excel W...

a sample_with_config

Figure 8. Opening the configuration Excel file

— Next, the Cisco ACI configuration file needs to be entered into an excel file with the file name
“empty_template.xIsx. Each section will be labeled on the sheet with the name "SEC ". For example,
on the second sheet there is a sheet name SEC_System_Setting, which means that the sheet is the Cisco
ACI configuration used to set the system. The appearance of the configuration file name can be seen in
Figure 9.

Index SEC_System_Setting SEC_Admin SEC_Fabric_Discovery SEC_Fabric_Policies SEC_Fabric_Access_Paolicies SEC_Tenant_1 SEC_Tenant 2 SEC_Tenant_3

Figure 9. Configuration file name

— After all the configurations have been entered, then the "empty template.xlsx" file can be saved and
closed.
— Then open the Ubuntu terminal or WSL software via the start menu in Windows.

Implementation of automation configuration of enterprise networks as software ... (Lindo Prasetyo)

106 a ISSN: 2722-3221

— The terminal will display the directory that will be used. In this research, we move the directory with
the command "cd cisco-aci-automation-TA-Lindo/" so that the directory will be moved to "/cisco-aci-
automation-TA-lindo/" as shown in Figure 10.

lindo@MNTT-5FXP3T3: ~/cisco: X + o~

:~% cd cisco-aci-automation-TA-Tindo/
g $ 1s -al

total 68

w

lindo lindo B May
lindo lindo B May
lindo lindo B May
lindo lindo May
lindo lindo May
lindo lindo May
lindo lindo B May
lindo lindo 188 May
lindo lindo : May
lindo lindo Mar
lindo lindo B May

oo

.gitignore
README . md
ansible.cfg

main.py

VR NE R R ®

=

~N
EFEmwwwwEEsEww

2822 requirements.txt
88:21
$ |

B R

Figure 10. Change directory

— After moving directories, install all the required libraries in the "requirements.txt" file using the "pip
install -r requirements.txt" command. The "requirements.txt" file contains the library information
needed by the automation tool. After all the requirements have been installed, then execute the
application using "python3 main.py" command as shown in Figure 11.

— Before configuring the Cisco ACI device, the device that will run the automation tool can access the
APIC from Cisco ACI and know the username and password for the authentication process to the APIC
device.

— The next step is to convert Excel input into YAML by selecting menu 21 or convert Excel to YAML on
the menu display in Figure 11. Ansible uses the contents of the file that has been converted to YAML
format to enter the configuration automatically into the Cisco ACI device.

— After the Excel file has been successfully converted into YAML format, then it can be configured
automatically to the Cisco ACI/APIC device by selecting the desired configuration menu. For example,
if menu 1 is selected, it will configure the system settings. The configuration process can also be carried
out simultaneously by entering a "," or "-" sign, for example entering the number "1.13" to run the
system settings and domains configuration. As well as entering the numbers "1-18" to run the system
setting configuration up to the EPG.

lindo@NTT-5FXP3T3: ~/cisco X

CISCO ACI AUTOMATION

Requirement:
* Make sure You already fill the Excel file on input_data directory.
= Make sure You have IP, user, pass, excel name of APIC.

Cisco ACI Configuration Task :

SYSTEM SETTING: FABRIC ACCESS POLICIES: TENANT 3:
1. System Setting . Access Policies . L30UT OSPF
ADMIN: 2. Pools 20. L30UT BGP
2. Admin . Domains 52
FAERIC DISCOVERY: TENANT 1: Convert Excel to YAML
3. POD Fabric Setup 14. Tenant Clear Vvars Folder
4. Fabric Membership 15. VRF 8. Quit
5. Node Management Address 16. Bridge Domain
FABRIC POLICIES: TENANT 2:
6. Policies 17. Application Profile
. Switch Policy Group 18. EPG
3. Switch Profile
. POD Policy Group

Enter your choices (number followed

Figure 11. Configuration initial view

Comput Sci Inf Technol, Vol. 5, No. 2, July 2024: 99-111

Comput Sci Inf Technol ISSN: 2722-3221 a 107

— If we have entered the selected menu, then enter information regarding the IP addresses or domain of
the Cisco ACI/APIC device, then enter the username and password, and enter the name of the Excel file
that was previously prepared in step number 5, without the extension then press enter. The process can
be seen in Figure 12. Then the user confirms to enter the configuration by entering "y" to continue and
entering "n™ to return to the main menu. Then hit enter.

E) lindo@NTT-SFXP3T3: ~/cisco X + v

CISCO ACI AUTOMATION

Requirement:
* M ure You already fill the Excel file on input_data directory.
* Make sure You have IP, user, pass, excel name of APIC.

Cisco ACI Configuration Task :

SYSTEM SETTING: ABRIC POLICIES: TENANT 3:
1. System Setting A s icie 19
20. L30UT BGP
2. 3. Domains
FABRIC WERY : TENANT 1: /er cel to YAML
3. . Tenant 2 Clear Vars Folder
4, bric Membership VRF
5. Node Management Address 6. Bridge Domain
FABRIC POLICIES: TENANT 2:
6. Policies 17. Application Profile
ch Policy Group 18.
nitch Profi
9. POD Policy Group

Enter your i followed by , or =):

Enter APIC or dd sandboxapicde.

Enter APIC

Enter APIC or M50

Enter Input Excel file (without file extension): sample_with_config

Figure 12. Account information input process

— After confirming the automation tool, configuration will be automatically carried out on the device
according to the selected device and will display a recap of information from the configuration process
along with the time required to carry out the configuration selected in step 12. An example is the result
of all configurations from the system settings shown in Figure 13. The time required to perform all
system setting configurations is 0.62 minutes. If there is only one configuration option, after pressing
enter, the automation tool will return to the main menu. However, if there is more than one
configuration option, after the process of one configuration section is complete, it will continue with the
next configuration. Finally, check whether the inserted tenant configurations matched with the keyed in
configuration to the Excel file. Tabel 1 shows all configurations available in the automation tool.

ED lindo@NTT-5FXP3T3: ~/cisco X + -~

TASK [Add nodes to default ROULE REFLECTON] ik ik kb ok ok ook ok ok ok ok ok sk ook sk sk ek ok ok ke e e

SK [Configur oM ALLAS ANC BANNEIS] ek sk ek e st e s ek e e e ek s ke e e e o e e e o ke e o e e e ek ek o

TASK [SEt TAMEZOME] ek ket stk ek ek sk sk s s e ook de bk e ok ok k68 e e ko sk ek ok k6 ek ke
SH [Set QOB Preference] ks bk sk ook deok s ok oot e ok e ok sk ok s ok ok o sk ok e ok ok ok sk ke o o e s e e oo o sk ok sk oo ok ook ek o o ok ok s ok e s sk e e
TASK [Enable IP AQing] ##axaakxskdkAXkXxAXXXXKRXXEXAXERKKAKERRKARXRKRXRK KR KR XRAAERE KKK R RRKRKX KX RA KKK AR ARKKKRRRKRK KRR

TASK [Disable Remote Endpoint LEarning] #xksxsxtidktskshdkishhhdshhshhshihhhhhhhthhhhhtdddhhhtaroh ot khhthshhhhshhds

TASK [ENADLE AES ENCIYPLAONT koo s sot sk koo o e s ok o s s ok e

Total Required Time: ©.62 minutes

Press Enter to continue...

Figure 13. Configuration information

Implementation of automation configuration of enterprise networks as software ... (Lindo Prasetyo)

108 a

ISSN: 2722-3221

Table 1. Testing results of all configuration available in automation tool

4.2. Discussion

No Section Name Configuration Name Result
1 System Setting OOB Preference 100 %
Banner and alias 100 %

AES Encryption 100 %

IP Aging 100 %

Remote EP Learning 100 %

Time Zone 100 %

MP BGP 100 %

2 Admin Security Domain 100 %
Local User 100 %

Export Policy 100 %

3 Pod Fabric Setup Pod and POD TEP Pool 100 %
4 Fabric Membership Fabric Discovery 100 %
5 Node Management Address OOB Management IP 100 %
Site Building 100 %

6 Fabric Policies NTP Policy 100 %
SNMP Policy 100 %

1SIS Policy 100 %

Power Supply Policy 100 %

Fabric Node Controls 100 %

7 Switch Policy Group Switch Policy Group 100 %
8 Switch Profile Switch Profile 100 %
9 Pod Policy Group Pod Policy Group 100 %
10 Pod Profile Pod Profile 100 %
11 Fabric Access Policies Interface Policies 100 %
AEP 100 %

MCP 100 %

12 Pools VLAN Pools 100 %
13 Domain Physical Domain 100 %
L3 Routed Domain 100 %

14 Tenant Tenant 100 %
Tenant Policies 100 %

15 VRF VRF 100 %
16 Bridge Domain Bridge Domain 100 %
17 Application Profile Application Profile 100 %

Having done implementing the SDN for auto configuration, then we perform evaluation. This
section discusses the performance of the proposed SDN. Firstly, the performance of the automation tool as
SDN in term of accuracy is discussed. Secondly, the execution times of the configurations with and without
the SDN (manual) are compared. Testing of automation tool is carried out to ensure that the configuration
keyed into the Cisco ACI system matches the data on the Excel File. At this stage, testing is carried out on
the sample configuration that will be tested on SEC_Tenant_1 by going through the configuration steps as
previously described. The test results show that the keyed in tenant configuration is in accordance with the
configuration keyed in the Excel file as shown in Figure 14.

Wl anc

system JRIUFWEM Fabric

Virtual Networking Admin Operations ps

Integrations

< D OO OO

ALLTENANTS | Add Tenant | Tenant

All Tenants

Description

Bridge Domains

VRFs EPGs

Figure 14. Test results

Comput Sci Inf Technol, Vol. 5, No. 2, July 2024: 99-111

Comput Sci Inf Technol ISSN: 2722-3221 a 109

Next, we measure the configuration time. In this experiment, a comparative test of configuration
time was carried out between manual configuration testing and configuration testing using the automation
tool. Configuration time testing is measured for a total of 100 configuration rules with different
configurations including Tenants, TN_Policies, virtual routing and forwarding (VRF), and bridge domain. In
this test, one Excel sheet was used, namely "SEC Tenant 1", which is the configuration with the most
oftenly used by engineers when configuring Cisco ACI and even though using another configuration, the
time required will not be much different from the Tenant configuration because it uses the same method. The
result of the time comparison between manual configuration and using automation tool is shown in the graph
in Figure 15. It shows that the time required for manual configuration is 50 minutes, while the automatic
configuration time takes 5.44 minutes or approximately 6 minutes. Thus, the proposed SDN improves the
configuration time by 833.33%.

100

Time (minutes)
o

ConfigurationType
= Manuals Configuration ® Automatic Configuration

Figure 15. Configuration time comparison

5. CONCLUSION

This research has implemented an automated configuration tool for Cisco ACI as an SDN by
combining Ansible and Python scripts in Ansible Playbook. The tool is able to speed up significantly the
configuration time and show a high configuration accuracy level. The input to the tool is configuration
parameters in the form of Excel template file to produce optimal router configuration simultaneously. Thus,
the proposed tool as an SDN assists the network engineer in managing the enterprise networks. Experimental
results showed that the proposed SDN achieved a significance improvement in configuring a complex
configuration, i.e.: 6 minutes configuration time, compared to50 minutes for manual configuration, which
means 833.33% improvement. In addition, the correctness of the configuration achieved 100% for all
scenarios. For the future research, it is proposed to expand the automation tool by incorporating more
configurations to increase the range of automatable configurations. The automation of input module is also
considered as future work. Additionally, there is a plan to develop a user-friendly interface in the form of a
website, aiming to facilitate users in utilizing the automation tool more effectively.

ACKNOWLEDGEMENTS
The author would like to express heartfelt gratitude to PT. NTT Indonesia Technology for assistance
and support throughout this research.

REFERENCES

[1] S. Badotra and S. N. Panda, “Evaluation and comparison of OpenDayLight and open networking operating system in software-
defined networking,” Cluster Computing, vol. 23, no. 2, pp. 1281-1291, 2020, doi: 10.1007/s10586-019-02996-0.

[2] S. K. Keshari, V. Kansal, and S. Kumar, “A systematic review of quality of services (QoS) in software defined networking
(SDN),” Wireless Personal Communications, vol. 116, no. 3, pp. 2593-2614, 2021, doi: 10.1007/s11277-020-07812-2.

[3] D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software defined networking (SDN) challenges, issues and solution,”
International Journal of Computer Sciences and Engineering, vol. 7, no. 1, pp. 884-889, 2019, doi: 10.26438/ijcse/v7i1.884889.

[4] W. Li, W. Meng, Z. Liu, and M. H. Au, “Towards blockchain-based software-defined networking: Security challenges and
solutions,” IEICE Transactions on Information and Systems, vol. E103D, no. 2, pp. 196-203, 2020, doi:
10.1587/transinf.2019IN10002.

[5] K. B. Sowmya and A. Thejaswini, “Systematising troubleshooting of disputes in network,” International Journal of
Reconfigurable and Embedded Systems, vol. 10, no. 1, pp. 32-36, 2021, doi: 10.11591/ijres.v10.i1.pp32-36.

[6] A. Abdulghaffar, A. Mahmoud, M. Abu-Amara, and T. Sheltami, “Modeling and evaluation of software defined networking
based 5G core network architecture,” IEEE Access, vol. 9, pp. 10179-10198, 2021, doi: 10.1109/ACCESS.2021.3049945.

[71 B. Sokappadu, A. Hardin, A. Mungur, and S. Armoogum, “Software defined networks: issues and challenges,” 2nd International
Conference on Next Generation Computing Applications 2019, NextComp 2019 - Proceedings, 2019, doi:
10.1109/NEXTCOMP.2019.8883558.

[8] M. Mujib and R. F. Sari, “Performance evaluation of data center network with network micro-segmentation,” ICITEE 2020 -
Proceedings of the 12th International Conference on Information Technology and Electrical Engineering, pp. 27-32, 2020, doi:
10.1109/ICITEE49829.2020.9271749.

Implementation of automation configuration of enterprise networks as software ... (Lindo Prasetyo)

110

a ISSN: 2722-3221

[
[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. S. S and S. Praveen, “Automation of CISCO SDWAN Controllers Upgrade Process,” Gradiva Review Journal, vol. 8, no. 8,
pp. 187-191, 2022.

M. F. Mohd Fuzi, K. Abdullah, I. H. Abd Halim, and R. Ruslan, “Network automation using ansible for EIGRP network,”
Journal of Computing Research and Innovation, vol. 6, no. 4, pp. 59-69, 2021, doi: 10.24191/jcrinn.v6i4.237.

S. E. e V. G. J. S. Saini, J. John, J. Fincher, L. J. Cockrell, N. D. Thorve, “Implementing VersaStack with Cisco ACI multi-pod
and IBM HyperSwap for high availability,” US: International Business Machines Corporation, 2018.

A. Baginyan et al., “JINR network infrastructure for megascience projects,” 3rd International Science and Technology
Conference ~ “Modern Network Technologies ~ 2020”7, MoNeTeC ~ 2020 - Proceedings, 2020, doi:
10.1109/MoNeTeC49726.2020.9258004.

B. Santoso and M. W. Sari, “Improvement of setup time on server infrastructure automation using ansible framework,” Journal of
Engineering Science and Technology, vol. 17, no. 5, pp. 3660-3671, 2022.

S. Dalla Palma, D. Di Nucci, and D. A. Tamburri, “AnsibleMetrics: A Python library for measuring Infrastructure-as-code
blueprints in Ansible,” SoftwareX, vol. 12, 2020, doi: 10.1016/j.s0ftx.2020.100633.

V. Shvetcova, O. Borisenko, and M. Polischuk, “Using ansible as part of TOSCA orchestrator,” Proceedings - 2020 lvannikov
Ispras Open Conference, ISPRAS 2020, pp. 109-114, 2020, doi: 10.1109/ISPRAS51486.2020.00023.

V. M. Ionescu, M. Patel, and D. Hindocha, “Alternatives for running Linux applications in windows,” Proceedings of the 11th
International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2019, 2019, doi:
10.1109/ECAI46879.2019.9042127.

R. Badhwar, “The CISO’s next frontier: Al, post-quantum cryptography and advanced security paradigms,” The CISO’s Next
Frontier: Al, Post-Quantum Cryptography and Advanced Security Paradigms, pp. 1-387, 2021, doi: 10.1007/978-3-030-75354-2.
P. Kochberger, A. Tauber, and S. Schrittwieser, “Assessment of the transparency of the windows subsystem for Linux (WSL),”
Proceedings - 2019 International Conference on Software Security and Assurance, ICSSA 2019, pp. 60-69, 2019, doi:
10.1109/ICSSA48308.2019.00015.

M. Kowsher, F. S. Tithi, M. Ashraful Alam, M. N. Huda, M. Md Moheuddin, and M. G. Rosul, “Doly: Bengali chatbot for
Bengali education,” 1st International Conference on Advances in Science, Engineering and Robotics Technology 2019, ICASERT
2019, 2019, doi: 10.1109/ICASERT.2019.8934592.

B. Wang, “Programming for qualitative data analysis: towards a YAML Workflow,” ACIS 2022 - Australasian Conference on
Information Systems, Proceedings, 2022.

S. Rasheed, J. Dietrich, and A. Tahir, “Laughter in the wild: A study into DoS vulnerabilities in YAML,” Proceedings - 2019
18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International
Conference on Big Data Science and Engineering, TrustCom/BigDataSE 2019, pp. 342-349, 2019, doi:
10.1109/TrustCom/BigDataSE.2019.00053.

A. Ehsan, M. A. M. E. Abuhaliga, C. Catal, and D. Mishra, “RESTful API testing methodologies: rationale, challenges, and
solution directions,” Applied Sciences (Switzerland), vol. 12, no. 9, 2022, doi: 10.3390/app12094369.

A. Belkhir, M. Abdellatif, R. Tighilt, N. Moha, Y. G. Gueheneuc, and E. Beaudry, “An observational study on the state of REST
API uses in android mobile applications,” Proceedings - 2019 IEEE/ACM 6th International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2019, pp. 66—75, 2019, doi: 10.1109/MOBILES0ft.2019.00020.

I. O. Suzanti, N. Fitriani, A. Jauhari, and A. Khozaimi, “REST API implementation on android based monitoring application,”
Journal of Physics: Conference Series, vol. 1569, no. 2, 2020, doi: 10.1088/1742-6596/1569/2/022088.

B. M. Adam, A. Rachmat Anom Besari, and M. M. Bachtiar, “Backend server system design based on REST API for cashless
payment system on retail community,” IES 2019 - International Electronics Symposium: The Role of Techno-Intelligence in
Creating an Open Energy System Towards Energy Democracy, Proceedings, pp. 208-213, 2019, doi:
10.1109/ELECSYM.2019.8901668.

BIOGRAPHIES OF AUTHORS

Lindo Prasetyo 4 B8 © works at PT NTT Indonesia Technology as a Network Engineer
and Automation Engineer. Currently, he is a final year undergraduate student at Department of
Informatics, Faculty of Computer Science, Universitas Mercu Buana, Jakarta, Indonesia. His
research interests include network automation, SDN, and QoS. To contact him, you can reach
him via email: 41519110015@student.mercubuana.ac.id.

Ifan Prihandi Bl © s currently a lecturer at Department of Information System,
Faculty of Computer Science, Universitas Mercu Buana, Jakarta, Indonesia. He received a
Master degree in Computer Science from Universitas Budi Luhur, Jakarta in 2014. His
research interests include software engineering, data solution and business intelligence. To
contact him, you can reach him via email: ifan.prihandi@mercubuana.ac.id.

Comput Sci Inf Technol, Vol. 5, No. 2, July 2024: 99-111

https://orcid.org/0009-0008-3884-1143
https://orcid.org/0009-0001-3404-4170
https://scholar.google.com/citations?user=Ikj7lcwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57211332411
https://www.webofscience.com/wos/author/record/AEY-4638-2022

Comput Sci Inf Technol ISSN: 2722-3221 a 111

Muhammad Rifqi E:A B8 © received a bachelor degree in Informatics Engineering in 1999
and a master degree in Informatics Engineering in 2011. He works as a lecturer in Informatics
department, Universitas Mercu Buana, Jakarta, Indonesia. 14 years of experience in industry
(Panasonic SC Indonesia, KIIC Karawang). His research focuses on computational
intelligence, cybersecurity, blockchain and network function virtualization. To contact him,
you can reach him via email: m.rifgi@mercubuana.ac.id.

Rahmat Budiarto ' E:{ B8 © received B.Sc. degree in Mathematics from Bandung Institute
of Technology, Indonesia in 1986, M.Eng. and Dr.Eng. in Computer Science from Nagoya
Institute of Technology, Japan in 1995 and 1998, respectively. Currently, he is a full professor
at Dept. of Informatics, Universitas Mercu Buana Indonesia. His research interests include
intelligent systems, brain modeling, IPv6, network security, Wireless sensor networks, and
MANETS. He can be contacted at email: rahmat.budiarto@mercubuana.ac.id.

Implementation of automation configuration of enterprise networks as software ... (Lindo Prasetyo)

https://orcid.org/0000-0001-9833-2596
https://scholar.google.com/citations?user=_2fQU_wAAAAJ&hl=id
https://orcid.org/0000-0002-6374-4731
https://scholar.google.com/citations?user=Qi24UpwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=6603477220
https://www.webofscience.com/wos/author/record/AAI-8271-2020

