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It is challenging for humans to keep up with the rapid creation of digital
information due to the explosion of digital information. A written document
can be analyzed to extract meaningful information using automatic text
summarization. This research proposes 16 different experimental settings in
which the model developed by IndoBERT will be applied in order to answer
the question of how much of an impact preprocessing has on the quality of
summaries produced by automatic text summarization. In order to answer
this question, the researchers have devised this study. In this study, we will
explicitly talk about preprocessing strategies by conducting tests with
different combinations of preprocessing techniques. These techniques
include data cleansing, stopwords, stemming, and case folding. After that,
the recall-oriented understudy for gisting evaluation (ROUGE) assessment
will be used to conduct the measurement of the research results. According
to the findings of this research, the optimal level of performance may be

accomplished by combining the processes of data cleaning and case folding
with scores of 0.78, 0.60, and 0.68 for ROUGE-1, ROUGE-2, and
ROUGE-L respectively.

This is an open access article under the CC BY-SA license.

[@Xoel
Mardhiya Hayaty

Department of Informatics, Faculty of Computer Science, Universitas Amikom Yogyakarta
Ring Road Utara, Depok, Sleman, Yogyakarta, Indonesia
Email: mardhiya_hayati@amikom.ac.id

Corresponding Author:

1. INTRODUCTION

When looking for information, people have to sift through hundreds or even thousands of results on
the internet, which is a direct result of the exponential growth in the amount of data. Many informational
resources found on the internet call for in-depth research in natural language processing (NLP). Because of
this, a system known as automatic text summarization was developed, and it quickly gained popularity, in
order to condense information so that it is easier for people to comprehend [1]. Documents that provide
summaries of text will be required more frequently to assist in the resolution of these issues.

Automated text summarization (ATS) is a method of extracting the essence of information from text
documents and containing the overall meaning of those texts [2]. ATS is now one of the most popular NLP
research fields for producing high-quality short paragraphs that cover the major body of a text document.
Readability, coherence, syntax, non-redundancy, sentence order, diversity of information, and information
coverage are some factors to consider for good summary findings [3]. Automatic summarizing techniques are
classified into two types: extractive and abstractive [4], [5]. An extractive summary extracts the most
important sections of a document without modifying the wording. Abstractive summaries modify sentences
to make new ones conceivable, and the results can be comparable to human summaries. Abstractive
summaries are more difficult to write because they involve meaning representation, content arrangement,
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surface manifestation, and intuitive understanding [6], [7]. Even though the themes, data types, and
algorithms differ, there are several sorts of ATS research. In the blog summarization dataset, extractive
research was carried out utilizing the SummCoder algorithm approach [8]. ROUGE-1 (78.0), ROUGE-2
(71.7), ROUGE-SU4 (71.8), and ROUGE-L (72.7) are the results given to the blog summary data set,
SummCoder, followed by Com01 and Alg09, with scores of 77.0 and 76.0 ROUGE-1, respectively. The
study was conducted in abstract form, with a genetic semantic graph used to summarize Indonesian news [9].
The results showed that a 100-word summary had an average ROUGE-2 (0.32) and a 200-word summary had
an average ROUGE-2 (0.39). Study [10] ROUGE-1 (0.11975), ROUGE-2 (0.01199) in scenario 1 with 128
hidden units, and ROUGE-1 (0.06745), ROUGE-2 (0.0055) in scenario 2 with 64 hidden units, are the results
of abstractive summarization in Indonesian using BiGRU.

Raw data is prone to noise, missing numbers, and inconsistencies, which degrade the accuracy of the
result [11]. Data preprocessing is an important first step in determining data quality. Preprocessing is the
process of structuring text documents such that a machine can read them easily. Data preparation is used in
every system created for text processing and NLP. According to research findings [12], [13], preprocessing
improves system performance. Unfortunately, earlier studies did not discuss the impact of the various
preprocessing approaches utilized, and it is also uncertain what kind of preprocessing combination delivers
best sentiment analysis performance. As a result, this study will concentrate on using various preprocessing
approaches to determine the effect of preprocessing on the version of automatic text summarizers. ROUGE
will be used to analyze the results that are produced by the machine summarization. The recall-oriented
understudy for gisting evaluation also known as ROUGE [14] is a measure or parameter for evaluation that
examines the results of summarizing text texts in an automated fashion.

Combining convenient features and preprocessing stages can improve summary performance and
reduce the amount of computation required [15]. Based on these findings, the features and preprocessing
tasks used to achieve the best summary performance may differ depending on the text's domain and the
success metrics used. As a result, the purpose of this research is to determine the impact of preprocessing
techniques on the result of summarization, so that this research can contribute to the influential preprocessing
stages and determine which preprocessing techniques are required or not. The following is an outline for this
paper. Section 2 describes the research methodology, datasets, and experimental scenarios. Section 3 then
explains the experimental results, and section 4 concludes.

2. METHOD
2.1. Research flow

This research aims to examine the performance impact of the pre-trained model by implementing a
combination of preprocessing stages and evaluate model performance systematically using the proposed
preprocessing technique. It is hoped that this research can contribute to the development of more accurate
and efficient natural language models. The system to be created is shown in Figure 1.
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Figure 1. Research flow

In the research flow in Figure 1, the researcher first entered and prepared the dataset. After that, the
distribution of training and testing data was carried out. Then carry out 16 experimental combinations of
preprocessing stages such as data cleaning, stemming, stopwords, and case folding. After applying the
preprocessing stage, the next step is to process the data to the input model and the training process. In the
final stage, evaluation and testing will be carried out using test data.

2.2. Transformers — BERT
Transformers architecture has two essential components, namely encoder and decoder. The encoder
functions to capture and convert the input sequence into binary form. The Decoder will display the results of
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the machine process as output that humans can understand [16]. The two are linked by the attention
mechanism, shown in Figure 2.
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Figure 2. Transformers — model architecture

Bidirectional encoder representations from transformers (BERT) is a transformer-based machine
learning technique trained in an English corpus to simplify the pre-training process in NLP [17]. The basic
transformer consists of an encoder to read the input text and a decoder to generate predictive assignments.
BERT only requires an encoder to produce a language representation model. The BERT architecture has 2
phases of use, namely Pre-training and Fine-Tuning, which can be combined in various tasks. There are
slight differences between the pre-trained and final architecture shown in Figure 3. Study [18] introduces
IndoBERT, a modified version of BERT Base following the BERT-Base (uncased) configuration. IndoBERT
has been trained to use 220 million words using three main sources, namely Indonesia Wikipedia
(74M words), Kompas Tempo and Liputan6 articles (55M total) and Indonesia Web Corpus (90M words).
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Figure 3. BERT pre-training and Fine-tuning - model architecture

2.3. Preprocessing

This research uses data cleaning, stop words, stemming and case folding at the preprocessing stage.
Studies [19]-[23] mentioned that stopword, stemming, and tokenization are the stages most often used to
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summarize the text. Tokenization is the process of splitting text into tokens. Words, symbols, numbers,
punctuation marks and other essential entities can be considered tokens. Stopword removal aims to extract
important words from the token results. Stemming is the process of eliminating reducing the number of index
sentences by removing affixes into basic forms. The stopwords and stemming used in this study use the
library from Sastrawi. Several combinations will be applied in this study by adding data cleaning and case
folding. Data cleaning removes digit numbers from strings, punctuations, URLs, and white spaces. Case
folding aims to change all letters in a document to lowercase. The common practice in most automated text
summarisation studies is applying all the pre-processing methods without thoroughly analyzing their
contribution to summary performance. Therefore, this study involves several experimental scenarios to see
whether there is an influence from the preprocessing stage on the summary system built with the four
preprocessing techniques listed in Table 1.

Table 1. Experiments of the preprocessing method
Experiment Data Cleaning  Stop Words  Stemming  Case Folding

1 Enabled Enabled Enabled Enabled
2 Enabled Enabled Enabled Disabled
3 Enabled Enabled Disabled Disabled
4 Enabled Disabled Disabled Disabled
5 Disabled Enabled Disabled Disabled
6 Disabled Disabled Enabled Disabled
7 Disabled Disabled Disabled Enabled
8 Enabled Disabled Enabled Disabled
9 Enabled Disabled Disabled Enabled
10 Disabled Enabled Enabled Disabled
11 Disabled Enabled Disabled Enabled
12 Disabled Disabled Enabled Enabled
13 Enabled Enabled Disabled Enabled
14 Enabled Disabled Enabled Enabled
15 Disabled Enabled Enabled Enabled
16 Disabled Disabled Disabled Disabled

2.4. Model

In the modelling stage using pretrained IndoBERT, a fine-tuning process will be carried out to
optimize the model so that it can be used in the summarization process. IndoBERT architecture is shown in
Figure 4. 1t is hoped that by using IndoBERT as the basic model and fine-tuning, the model can produce
quality summary text according to user needs.
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Figure 4. Architecture of the IndoBERT for summarization model
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Based on Figure 4. IndoBERT changes the input of a sentence into a token sequence. During the
tokenization process, special tokens will be added, namely [CLS], [SEP], and [PAD] tokens. Token [CLS] is
a token to symbolize the start of a sentence, and token [SEP] is a token to separate between sentences. [PAD]
token to add padding and maximize the initialized token. In implementing text summarization, tokens [CLS]
and [SEP] are inserted at the beginning and end of each sentence. A mask carries out bidirectional training
with a certain percentage of the input token trained by pretraining. The transformers encoder's and MLP
layers' parameters are randomly initialised [24]. The transformer’s encoder is configured as follows: layer=2,
hidden size=768, feed-forward=2.048, and heads=8. The hyperparameters are trained using the Adam
optimizer with a learning rate=3e®, batch size=16, epoch=7, and weight decay=5e. The hardware
specifications used can be described as follows:

—  Device Name: Laptop Asus Vivobook A416JA
- RAM:8GB

—  GPU: Intel UHD Graphics

—  CPU: Intel Core i3-1005G1

—  Software: Google Colaboratory

2.5. Evaluation

ROUGE [14] is an evaluation metric or parameter that automatically evaluates the results of
summarizing text documents. ROUGE evaluates the summary results by comparing the machines and human
results (gold summary). The most popular evaluation metrics used for ATS are ROUGE-N, and ROUGE L.
ROUGE-N is a recall calculation based on n-grams between gold summary and machine summarized text.
The number of n-grams often used is n=1 (ROUGE 1) and n=2 (ROUGE 2). For example, x is the number of
n-grams that is the same between the gold standard summary and the machine-summarized text, and y is the
number of n-grams in the gold standard summary. Then ROUGE-N can be calculated by the following
formula,

ROUGE-N :g

ROUGE-L evaluates text summaries by comparing the longest common subsequence (LCS) or the longest
series of words that are the same between the engine text summary results and the gold standard summary.
For example, z is the number of words in the gold standard summary, then ROUGE-L can be calculated
using the following formula,

ROUGE-L = &

z

3. RESULTS AND DISCUSSION

This section reports the results of 16 experiments conducted to assess the accuracy of the summary
results before and after applying the preprocessing method. The difference in each scenario is in the
preprocessing section. This text summary test uses a dataset from IndoSum [25] of 14,262 news articles
divided into 80% train data and 20% validation data. News articles are taken from Indonesian language news
portals with titles, categories, and two gold standard summaries made manually. The test data consisting of
3762 articles have been applied to the preprocessing stage according to the experimental scenario used to test
the model. From the results of the summary, a text summary performance evaluation will be carried out using
the Rouge Score to determine the accuracy of the system being built. Table 2 are the results of the 16
experiments that have been carried out.

Based on Table 2, of the 16 experiments that have been carried out, it turns out that the highest
ROUGE score was found in experiment 9 with ROUGE-1 (0.78), ROUGE-2 (0.60), and ROUGE-L (0.68)
scores. The best system performance is obtained when combining data cleaning and case folding. The high
ROUGE score in experiment 9 is due to the data cleaning process, which cleans dirty data. The application of
case folding also has an effect because the data becomes structured and consistent in the use of capital letters.
However, case folding without the data cleaning process gets the lowest results as in experiment 7. The
lowest ROUGE value in experiment 7 gets ROUGE-1 (0.16), ROUGE-2 (0.05), and ROUGE-L (0.15)
scores. The low results in experiment 7 were caused by the absence of a data cleaning process, so the model
could not capture the information contained in the original text, or the summary results could have been
better. Preprocessing testing using data cleaning produces better performance when compared to testing
without using data cleaning, shown in Figure 5.
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Table 2. Result of experiments
Experiment  Data Cleaning  Stop Words  Stemming  Case Folding R1 R2 RL

1 Enabled Enabled Enabled Enabled 0.428 0.218 0.378
2 Enabled Enabled Enabled Disabled 0.446 0.238 0.398
3 Enabled Enabled Disabled Disabled 0.422 0217 0.380
4 Enabled Disabled Disabled Disabled 0.681 0.561 0.655
5 Disabled Enabled Disabled Disabled 0.344 0.124 0.320
6 Disabled Disabled Enabled Disabled 0.405 0.164 0.387
7 Disabled Disabled Disabled Enabled 0.165 0.055 0.158
8 Enabled Disabled Enabled Disabled 0.353 0.264 0.329
9 Enabled Disabled Disabled Enabled 0.708 0.603 0.685
10 Disabled Enabled Enabled Disabled 0.299 0.109 0.289
11 Disabled Enabled Disabled Enabled 0.302 0.108 0.291
12 Disabled Disabled Enabled Enabled 0.314 0.119 0.305
13 Enabled Enabled Disabled Enabled 0.550 0.348 0.506
14 Enabled Disabled Enabled Enabled 0.607 0.449 0.579
15 Disabled Enabled Enabled Enabled 0.282 0.098 0.273
16 Disabled Disabled Disabled Disabled 0.370 0.130 0.355
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Figure 5. ROUGE score in ascending order

Figure 5 the nine highest experimental trials used data cleaning, except for experiment 6. This
experiment only used stemming with an average ROUGE score better than experiment 8, which used a
combination of data cleaning and stemming. The stemming used in the experiment cleaned dirty data even
though there were still a few dashes, thus influencing the ROUGE score. Experimental combination testing
without data cleaning will hurt the accuracy value in the seven lowest experiments. Most tests involving
stopwords, stemming, and case folding produces low accuracy. Meanwhile, using stopwords and stemming
techniques accompanied by data cleaning has a negative effect even though the accuracy results on the
stopwords and stemming tests produce good accuracy. This is because when using stopwords and stemming,
there are words that, if omitted, can reduce the information from the sentence so that the features used cannot
describe the data. Using a large number of preprocessing techniques does not guarantee better system
performance accuracy.

The results of experiment 7, Table 3. is one of the samples in the preprocessing stage that has been
applied using only case folding. Before preprocessing, the articles and references summary columns still
contained unnecessary punctuation, URLSs, digits, and white space. After the preprocessing stage, the data
still looks the same as before; only all letters are lowercase. The summary generated by the model is also
ugly because the system needs to capture complete information.

From the test results in experiment 9, it can be seen that Table 4 is one of the preprocessing stages
samples that have been applied. Before preprocessing, the articles and references summary columns
contained unnecessary punctuation, URLs, digits and white space. Data cleaning and case folding are applied
to these columns. After the preprocessing stage is carried out, it looks cleaner and easier to read and
understand. The summary generated by the model also looks good, with information similar to the reference
summary.
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Table 3. Sample of summarization result experiment 7

Article: Preprocessing Article: References Summary Preprocessing Model
References Summary Summary

[[[‘Jakarta’, <, ‘CNN’, [[[‘jakarta’, <, ‘enn’, [[‘Eman’, ‘Ahmed’, ‘Abd’, [[‘Eman’, ‘Ahmed’, [ [‘seorang
‘Indonesia’, - ‘-¢, ‘indonesia’, - -, ‘El,  ‘Aty’, ‘memiliki’, ‘Abd’,  ‘El, ‘Aty’,  ‘warga
‘Dilansir’, ‘AFP’, <, “dilansir’, ‘afp’, ‘), ‘berat’, ‘badan’, ‘memiliki’, ‘berat’, ‘mesir’
‘seorang’, ‘warga’, ‘Mesir’,  ‘seorang’, ‘warga’, ‘mesir’, ‘mencapai’, ‘500°,  ‘badan’, ‘mencapai’,  yang’
‘yang’, ‘dipercaya’, ‘yang’, ‘dipercaya’, ‘kilogram’, ‘sebelum’,  ‘500°, ‘kilogram’,  bernama’
‘sebagai’, ‘wanita’,  ‘sebagai’, ‘wanita’,  ‘menjalankan’,  ‘operasi’, ‘sebelum’, dipercaya’
‘terberat’, ‘di’, ‘dunia’, ‘terberat’, ‘di’, ‘dunia’, ‘di’, ‘Mumbai’, ‘Maret’, ‘menjalankan’, sebagai’
‘masuk’, ‘sebuah’, ‘rumah’, ‘masuk’, ‘sebuah’, ‘rumah’, ‘lalu’.. ‘operasi’... anita
‘sakit’... ‘sakit’... ([l'Eman’', 'Ahmed', 'Abd’, (‘aty', ‘had’, ‘weight', wanita...
([[['Jakarta’, ‘', 'CNN' ([[['jakarta’, ',  ‘cnn', 'ElI', 'Aty’, 'had’, 'weight’, 'body', ‘reached', '500',
‘Indonesia’, ', 'indonesia’, '-', '-', 'reported’, 'body', ‘reached’, '500', ‘kilogram', ‘before’,  (Which'
‘Reported’, 'AFP', ', ‘'a', ‘afp','),'d, ‘citizen’, 'egypt', ‘kilogram', ‘before', 'run',  ‘running’, 'surgery’'...,) named'
‘citizen', 'Egypt' , 'which’, ‘which’, 'trusted’,  'as’, ‘surgery’, 'in', 'Mumbai’, trusted’ as'
‘trusted’, ‘'as’, ‘'woman’, ‘'woman’', ‘heaviest’, ‘'in', ‘'march’, 'then’...) anita
‘heaviest’, ‘in’, ‘world’, ‘in', ‘world’, '‘in', ‘'a‘’, 'home', woman...)
'a’, 'home', 'sick...) 'sick’...)

Table 4. Sample of summarization result experiment 9

Article: Preprocessing Article References Summary Preprocessing Model Summary
References
Summary
[[['Merdeka.com’, '-', 'Presiden’, merdeka com presiden [['Presiden’, ‘Joko',  presiden joko  presiden joko widodo
‘Joko', 'Widodo', '(', Jokowi', ')',  joko widodo jokowi tak ‘Widodo', ‘(', ‘Jokowi', widodo jokowi  tak hanya membangun
'tak', ‘'hanya’, 'membangun’, hanya membangun )", ‘akan’, akan membangun rumah untuk pekerja
rumah’, ‘untuk’, ‘pekerja’, ', rumah untuk pekerja 'membangun’, ‘rusun’, rusun untuk para masyarakat
'masyarakat’, 'berpenghasilan’, masyarakat 'untuk’, 'para’, 'santri', santri di pondok berpenghasilan rendah
‘rendah’, '), ‘prajurit, "TNI', /',  berpenghasilan rendah 'di', ‘pondok-pondok’, pondok prajurit tni polri dan
'Polri', 'dan', 'mahasiswa’, ... prajurit tni polri dan 'pesantren','.],... pesantren... mahasiswa. ..
([[['Merdeka.com', ', mahasiswa ... ([['President’, 'Joko',  (president joko  (president joko widodo
'Presiden’, 'Joko', 'Widodo', '(",  (merdeka com president ‘Widodo', (', 'Jokowi', widodo jokowi will ~will not only build
‘Jokowi', '), ‘'not', ‘only', joko widodo jokowi will '), ‘will', 'build', 'flat’, build flats for houses for low-income
‘building’, ' house', ‘for', notonly build houses for  ‘for’, 'para’, ‘students’, students at Islamic community  workers,
‘workers', ', ‘'community', low-income community ‘in', 'boarding  boarding military police and
‘income’, ‘low', '/, ‘'soldier’, workers, military police schools', ‘boarding schools...) students...)
‘TNI', '/, ‘'Polri', ‘'and' , and students ...) schools’, '], ...)
'student’,...)

4. CONCLUSION

A combination of preprocessing data cleaning and case folding produces the best system
performance, as determined by the findings of several experimental scenarios for ATS utilizing IndoSum.
This can be deduced from the findings as a result of the findings. The ROUGE score can be significantly
affected by the thoroughness with which data is cleaned. Case folding, stemming, and stopwords produce
results that are not quite as good when applied without prior data cleaning. The use of stemming and
stopwords techniques can have a negative impact on the performance of an ATS because these techniques
can reduce the amount of information taken from an influential sentence. If you only use a few of the
preprocessing techniques, you will ensure the best performance possible for the system. To compare the
preprocessing stages of each language, a similar analysis could be run using more than one data set as the basis.
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