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 It is challenging for humans to keep up with the rapid creation of digital 

information due to the explosion of digital information. A written document 

can be analyzed to extract meaningful information using automatic text 

summarization. This research proposes 16 different experimental settings in 

which the model developed by IndoBERT will be applied in order to answer 

the question of how much of an impact preprocessing has on the quality of 

summaries produced by automatic text summarization. In order to answer 

this question, the researchers have devised this study. In this study, we will 

explicitly talk about preprocessing strategies by conducting tests with 

different combinations of preprocessing techniques. These techniques 

include data cleansing, stopwords, stemming, and case folding. After that, 

the recall-oriented understudy for gisting evaluation (ROUGE) assessment 

will be used to conduct the measurement of the research results. According 

to the findings of this research, the optimal level of performance may be 

accomplished by combining the processes of data cleaning and case folding 

with scores of 0.78, 0.60, and 0.68 for ROUGE-1, ROUGE-2, and  

ROUGE-L respectively.  
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1. INTRODUCTION 

When looking for information, people have to sift through hundreds or even thousands of results on 

the internet, which is a direct result of the exponential growth in the amount of data. Many informational 

resources found on the internet call for in-depth research in natural language processing (NLP). Because of 

this, a system known as automatic text summarization was developed, and it quickly gained popularity, in 

order to condense information so that it is easier for people to comprehend [1]. Documents that provide 

summaries of text will be required more frequently to assist in the resolution of these issues. 

Automated text summarization (ATS) is a method of extracting the essence of information from text 

documents and containing the overall meaning of those texts [2]. ATS is now one of the most popular NLP 

research fields for producing high-quality short paragraphs that cover the major body of a text document. 

Readability, coherence, syntax, non-redundancy, sentence order, diversity of information, and information 

coverage are some factors to consider for good summary findings [3]. Automatic summarizing techniques are 

classified into two types: extractive and abstractive [4], [5]. An extractive summary extracts the most 

important sections of a document without modifying the wording. Abstractive summaries modify sentences 

to make new ones conceivable, and the results can be comparable to human summaries. Abstractive 

summaries are more difficult to write because they involve meaning representation, content arrangement, 
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surface manifestation, and intuitive understanding [6], [7]. Even though the themes, data types, and 

algorithms differ, there are several sorts of ATS research. In the blog summarization dataset, extractive 

research was carried out utilizing the SummCoder algorithm approach [8]. ROUGE-1 (78.0), ROUGE-2 

(71.7), ROUGE-SU4 (71.8), and ROUGE-L (72.7) are the results given to the blog summary data set, 

SummCoder, followed by Com01 and Alg09, with scores of 77.0 and 76.0 ROUGE-1, respectively. The 

study was conducted in abstract form, with a genetic semantic graph used to summarize Indonesian news [9]. 

The results showed that a 100-word summary had an average ROUGE-2 (0.32) and a 200-word summary had 

an average ROUGE-2 (0.39). Study [10] ROUGE-1 (0.11975), ROUGE-2 (0.01199) in scenario 1 with 128 

hidden units, and ROUGE-1 (0.06745), ROUGE-2 (0.0055) in scenario 2 with 64 hidden units, are the results 

of abstractive summarization in Indonesian using BiGRU. 

Raw data is prone to noise, missing numbers, and inconsistencies, which degrade the accuracy of the 

result [11]. Data preprocessing is an important first step in determining data quality. Preprocessing is the 

process of structuring text documents such that a machine can read them easily. Data preparation is used in 

every system created for text processing and NLP. According to research findings [12], [13], preprocessing 

improves system performance. Unfortunately, earlier studies did not discuss the impact of the various 

preprocessing approaches utilized, and it is also uncertain what kind of preprocessing combination delivers 

best sentiment analysis performance. As a result, this study will concentrate on using various preprocessing 

approaches to determine the effect of preprocessing on the version of automatic text summarizers. ROUGE 

will be used to analyze the results that are produced by the machine summarization. The recall-oriented 

understudy for gisting evaluation also known as ROUGE [14] is a measure or parameter for evaluation that 

examines the results of summarizing text texts in an automated fashion. 

Combining convenient features and preprocessing stages can improve summary performance and 

reduce the amount of computation required [15]. Based on these findings, the features and preprocessing 

tasks used to achieve the best summary performance may differ depending on the text's domain and the 

success metrics used. As a result, the purpose of this research is to determine the impact of preprocessing 

techniques on the result of summarization, so that this research can contribute to the influential preprocessing 

stages and determine which preprocessing techniques are required or not. The following is an outline for this 

paper. Section 2 describes the research methodology, datasets, and experimental scenarios. Section 3 then 

explains the experimental results, and section 4 concludes. 

 

 

2. METHOD  

2.1.  Research flow 

This research aims to examine the performance impact of the pre-trained model by implementing a 

combination of preprocessing stages and evaluate model performance systematically using the proposed 

preprocessing technique. It is hoped that this research can contribute to the development of more accurate 

and efficient natural language models. The system to be created is shown in Figure 1. 

 

 

 
 

Figure 1. Research flow 

 

 

In the research flow in Figure 1, the researcher first entered and prepared the dataset. After that, the 

distribution of training and testing data was carried out. Then carry out 16 experimental combinations of 

preprocessing stages such as data cleaning, stemming, stopwords, and case folding. After applying the 

preprocessing stage, the next step is to process the data to the input model and the training process. In the 

final stage, evaluation and testing will be carried out using test data. 

 

2.2.  Transformers – BERT 

Transformers architecture has two essential components, namely encoder and decoder. The encoder 

functions to capture and convert the input sequence into binary form. The Decoder will display the results of 
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the machine process as output that humans can understand [16]. The two are linked by the attention 

mechanism, shown in Figure 2.  

 

 

 
 

Figure 2. Transformers – model architecture 

 

 

Bidirectional encoder representations from transformers (BERT) is a transformer-based machine 

learning technique trained in an English corpus to simplify the pre-training process in NLP [17]. The basic 

transformer consists of an encoder to read the input text and a decoder to generate predictive assignments. 

BERT only requires an encoder to produce a language representation model. The BERT architecture has 2 

phases of use, namely Pre-training and Fine-Tuning, which can be combined in various tasks. There are 

slight differences between the pre-trained and final architecture shown in Figure 3. Study [18] introduces 

IndoBERT, a modified version of BERT Base following the BERT-Base (uncased) configuration. IndoBERT 

has been trained to use 220 million words using three main sources, namely Indonesia Wikipedia  

(74M words), Kompas Tempo and Liputan6 articles (55M total) and Indonesia Web Corpus (90M words).  

 

 

 
 

Figure 3. BERT pre-training and Fine-tuning - model architecture 

 

 

2.3.  Preprocessing 

This research uses data cleaning, stop words, stemming and case folding at the preprocessing stage. 

Studies [19]–[23] mentioned that stopword, stemming, and tokenization are the stages most often used to 
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summarize the text. Tokenization is the process of splitting text into tokens. Words, symbols, numbers, 

punctuation marks and other essential entities can be considered tokens. Stopword removal aims to extract 

important words from the token results. Stemming is the process of eliminating reducing the number of index 

sentences by removing affixes into basic forms. The stopwords and stemming used in this study use the 

library from Sastrawi. Several combinations will be applied in this study by adding data cleaning and case 

folding. Data cleaning removes digit numbers from strings, punctuations, URLs, and white spaces. Case 

folding aims to change all letters in a document to lowercase. The common practice in most automated text 

summarisation studies is applying all the pre-processing methods without thoroughly analyzing their 

contribution to summary performance. Therefore, this study involves several experimental scenarios to see 

whether there is an influence from the preprocessing stage on the summary system built with the four 

preprocessing techniques listed in Table 1. 

 

 

Table 1. Experiments of the preprocessing method 
Experiment Data Cleaning Stop Words Stemming Case Folding 

1 Enabled Enabled Enabled Enabled 

2 Enabled Enabled Enabled Disabled 

3 Enabled Enabled Disabled Disabled 

4 Enabled Disabled Disabled Disabled 

5 Disabled Enabled Disabled Disabled 
6 Disabled Disabled Enabled Disabled 

7 Disabled Disabled Disabled Enabled 

8 Enabled Disabled Enabled Disabled 

9 Enabled Disabled Disabled Enabled 

10 Disabled Enabled Enabled Disabled 
11 Disabled Enabled Disabled Enabled 

12 Disabled Disabled Enabled Enabled 

13 Enabled Enabled Disabled Enabled 

14 Enabled Disabled Enabled Enabled 
15 Disabled Enabled Enabled Enabled 

16 Disabled Disabled Disabled Disabled 

 

 

2.4.  Model 

In the modelling stage using pretrained IndoBERT, a fine-tuning process will be carried out to 

optimize the model so that it can be used in the summarization process. IndoBERT architecture is shown in 

Figure 4. It is hoped that by using IndoBERT as the basic model and fine-tuning, the model can produce 

quality summary text according to user needs. 

 

 

 
 

Figure 4. Architecture of the IndoBERT for summarization model 
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Based on Figure 4. IndoBERT changes the input of a sentence into a token sequence. During the 

tokenization process, special tokens will be added, namely [CLS], [SEP], and [PAD] tokens. Token [CLS] is 

a token to symbolize the start of a sentence, and token [SEP] is a token to separate between sentences. [PAD] 

token to add padding and maximize the initialized token. In implementing text summarization, tokens [CLS] 

and [SEP] are inserted at the beginning and end of each sentence. A mask carries out bidirectional training 

with a certain percentage of the input token trained by pretraining. The transformers encoder's and MLP 

layers' parameters are randomly initialised [24]. The transformer’s encoder is configured as follows: layer=2, 

hidden size=768, feed-forward=2.048, and heads=8. The hyperparameters are trained using the Adam 

optimizer with a learning rate=3e-5, batch size=16, epoch=7, and weight decay=5e-3. The hardware 

specifications used can be described as follows: 

− Device Name: Laptop Asus Vivobook A416JA 

− RAM: 8 GB 

− GPU: Intel UHD Graphics 

− CPU: Intel Core i3-1005G1 

− Software: Google Colaboratory 

 

2.5.  Evaluation 

ROUGE [14] is an evaluation metric or parameter that automatically evaluates the results of 

summarizing text documents. ROUGE evaluates the summary results by comparing the machines and human 

results (gold summary). The most popular evaluation metrics used for ATS are ROUGE-N, and ROUGE L. 

ROUGE-N is a recall calculation based on n-grams between gold summary and machine summarized text. 

The number of n-grams often used is n=1 (ROUGE 1) and n=2 (ROUGE 2). For example, x is the number of 

n-grams that is the same between the gold standard summary and the machine-summarized text, and y is the 

number of n-grams in the gold standard summary. Then ROUGE-N can be calculated by the following 

formula,  

 

ROUGE-N = 
𝑥

𝑦
  

 

ROUGE-L evaluates text summaries by comparing the longest common subsequence (LCS) or the longest 

series of words that are the same between the engine text summary results and the gold standard summary. 

For example, z is the number of words in the gold standard summary, then ROUGE-L can be calculated 

using the following formula,  

 

ROUGE-L = 
𝐿𝐶𝑆

𝑧
  

 

 

3. RESULTS AND DISCUSSION 

This section reports the results of 16 experiments conducted to assess the accuracy of the summary 

results before and after applying the preprocessing method. The difference in each scenario is in the 

preprocessing section. This text summary test uses a dataset from IndoSum [25] of 14,262 news articles 

divided into 80% train data and 20% validation data. News articles are taken from Indonesian language news 

portals with titles, categories, and two gold standard summaries made manually. The test data consisting of 

3762 articles have been applied to the preprocessing stage according to the experimental scenario used to test 

the model. From the results of the summary, a text summary performance evaluation will be carried out using 

the Rouge Score to determine the accuracy of the system being built. Table 2 are the results of the 16 

experiments that have been carried out. 

Based on Table 2, of the 16 experiments that have been carried out, it turns out that the highest 

ROUGE score was found in experiment 9 with ROUGE-1 (0.78), ROUGE-2 (0.60), and ROUGE-L (0.68) 

scores. The best system performance is obtained when combining data cleaning and case folding. The high 

ROUGE score in experiment 9 is due to the data cleaning process, which cleans dirty data. The application of 

case folding also has an effect because the data becomes structured and consistent in the use of capital letters. 

However, case folding without the data cleaning process gets the lowest results as in experiment 7. The 

lowest ROUGE value in experiment 7 gets ROUGE-1 (0.16), ROUGE-2 (0.05), and ROUGE-L (0.15) 

scores. The low results in experiment 7 were caused by the absence of a data cleaning process, so the model 

could not capture the information contained in the original text, or the summary results could have been 

better. Preprocessing testing using data cleaning produces better performance when compared to testing 

without using data cleaning, shown in Figure 5. 
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Table 2. Result of experiments 
Experiment Data Cleaning Stop Words Stemming Case Folding R1 R2 RL 

1 Enabled Enabled Enabled Enabled 0.428 0.218 0.378 

2 Enabled Enabled Enabled Disabled 0.446 0.238 0.398 

3 Enabled Enabled Disabled Disabled 0.422 0.217 0.380 

4 Enabled Disabled Disabled Disabled 0.681 0.561 0.655 

5 Disabled Enabled Disabled Disabled 0.344 0.124 0.320 
6 Disabled Disabled Enabled Disabled 0.405 0.164 0.387 

7 Disabled Disabled Disabled Enabled 0.165 0.055 0.158 

8 Enabled Disabled Enabled Disabled 0.353 0.264 0.329 

9 Enabled Disabled Disabled Enabled 0.708 0.603 0.685 

10 Disabled Enabled Enabled Disabled 0.299 0.109 0.289 
11 Disabled Enabled Disabled Enabled 0.302 0.108 0.291 

12 Disabled Disabled Enabled Enabled 0.314 0.119 0.305 

13 Enabled Enabled Disabled Enabled 0.550 0.348 0.506 

14 Enabled Disabled Enabled Enabled 0.607 0.449 0.579 

15 Disabled Enabled Enabled Enabled 0.282 0.098 0.273 
16 Disabled Disabled Disabled Disabled 0.370 0.130 0.355 

 

 

 
 

Figure 5. ROUGE score in ascending order 

 

 

Figure 5 the nine highest experimental trials used data cleaning, except for experiment 6. This 

experiment only used stemming with an average ROUGE score better than experiment 8, which used a 

combination of data cleaning and stemming. The stemming used in the experiment cleaned dirty data even 

though there were still a few dashes, thus influencing the ROUGE score. Experimental combination testing 

without data cleaning will hurt the accuracy value in the seven lowest experiments. Most tests involving 

stopwords, stemming, and case folding produces low accuracy. Meanwhile, using stopwords and stemming 

techniques accompanied by data cleaning has a negative effect even though the accuracy results on the 

stopwords and stemming tests produce good accuracy. This is because when using stopwords and stemming, 

there are words that, if omitted, can reduce the information from the sentence so that the features used cannot 

describe the data. Using a large number of preprocessing techniques does not guarantee better system 

performance accuracy.  

The results of experiment 7, Table 3. is one of the samples in the preprocessing stage that has been 

applied using only case folding. Before preprocessing, the articles and references summary columns still 

contained unnecessary punctuation, URLs, digits, and white space. After the preprocessing stage, the data 

still looks the same as before; only all letters are lowercase. The summary generated by the model is also 

ugly because the system needs to capture complete information. 

From the test results in experiment 9, it can be seen that Table 4 is one of the preprocessing stages 

samples that have been applied. Before preprocessing, the articles and references summary columns 

contained unnecessary punctuation, URLs, digits and white space. Data cleaning and case folding are applied 

to these columns. After the preprocessing stage is carried out, it looks cleaner and easier to read and 

understand. The summary generated by the model also looks good, with information similar to the reference 

summary.  
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Table 3. Sample of summarization result experiment 7 
Article: Preprocessing Article: References Summary Preprocessing 

References Summary 
Model 

Summary 

[[[‘Jakarta’, ‘,’, ‘CNN’, 

‘Indonesia’, ‘-‘, ‘-‘, 

‘Dilansir’, ‘AFP’, ‘,’, 

‘seorang’, ‘warga’, ‘Mesir’, 
‘yang’, ‘dipercaya’, 

‘sebagai’, ‘wanita’, 

‘terberat’, ‘di’, ‘dunia’, 

‘masuk’, ‘sebuah’, ‘rumah’, 

‘sakit’… 
 ([[['Jakarta', ',', 'CNN', 

'Indonesia', '-', '-', 

'Reported', 'AFP', ',', 'a', 

'citizen', 'Egypt' , 'which', 

'trusted', 'as', 'woman', 
'heaviest', 'in', 'world', 'in', 

'a', 'home', 'sick…) 

[[[‘jakarta’, ‘,’, ‘cnn’, 

‘indonesia’, ‘-‘, ‘-‘, 

‘dilansir’, ‘afp’, ‘,’, 

‘seorang’, ‘warga’, ‘mesir’, 
‘yang’, ‘dipercaya’, 

‘sebagai’, ‘wanita’, 

‘terberat’, ‘di’, ‘dunia’, 

‘masuk’, ‘sebuah’, ‘rumah’, 

‘sakit’… 
([[['jakarta', ',', 'cnn', 

'indonesia', '-', '-', 'reported', 

'afp', ',', 'a', 'citizen', 'egypt' , 

'which', 'trusted', 'as', 

'woman', 'heaviest', 'in', 
'world', 'in', 'a', 'home', 

'sick'…) 

[[‘Eman’, ‘Ahmed’, ‘Abd’, 

‘El’, ‘Aty’, ‘memiliki’, 

‘berat’, ‘badan’, 

‘mencapai’, ‘500’, 
‘kilogram’, ‘sebelum’, 

‘menjalankan’, ‘operasi’, 

‘di’, ‘Mumbai’, ‘Maret’, 

‘lalu’.. 

([['Eman', 'Ahmed', 'Abd', 
'El', 'Aty', 'had', 'weight', 

'body', 'reached', '500', 

'kilogram', 'before', 'run', 

'surgery', 'in', 'Mumbai', 

'march', 'then'…) 

[[‘Eman’, ‘Ahmed’, 

‘Abd’, ‘El’, ‘Aty’, 

‘memiliki’, ‘berat’, 

‘badan’, ‘mencapai’, 
‘500’, ‘kilogram’, 

‘sebelum’, 

‘menjalankan’, 

‘operasi’… 

('aty', 'had', 'weight', 
'body', 'reached', '500', 

'kilogram', 'before', 

'running', 'surgery'…,) 

[ [‘seorang 

‘,’warga 

‘mesir’ 

yang’ 
bernama’ 

dipercaya’ 

sebagai’ 

anita 

wanita… 
 

(Which' 

named' 

trusted' as' 

anita 
woman…) 

 

 

Table 4. Sample of summarization result experiment 9 
Article: Preprocessing Article References Summary Preprocessing 

References 

Summary 

Model Summary 

[[['Merdeka.com', '-', 'Presiden', 

'Joko', 'Widodo', '(', 'Jokowi', ')', 

'tak', 'hanya', 'membangun', 

'rumah', 'untuk', 'pekerja', ',', 
'masyarakat', 'berpenghasilan', 

'rendah', ',', 'prajurit', 'TNI', '/', 

'Polri', 'dan', 'mahasiswa', … 

([[['Merdeka.com', '-', 

'Presiden', 'Joko', 'Widodo', '(', 
'Jokowi', ')', 'not', 'only', 

'building', ' house', 'for', 

'workers', ',', 'community', 

'income', 'low', ',', 'soldier', 

'TNI', '/', 'Polri', 'and' , 
'student',…) 

merdeka com presiden 

joko widodo jokowi tak 

hanya membangun 

rumah untuk pekerja 
masyarakat 

berpenghasilan rendah 

prajurit tni polri dan 

mahasiswa …  

(merdeka com president 
joko widodo jokowi will 

not only build houses for 

low-income community 

workers, military police 

and students …) 

[['Presiden', 'Joko', 

'Widodo', '(', 'Jokowi', 

')', 'akan', 

'membangun', 'rusun', 
'untuk', 'para', 'santri', 

'di', 'pondok-pondok', 

'pesantren', '.'],… 

([['President', 'Joko', 

'Widodo', '(', 'Jokowi', 
')', 'will', 'build', 'flat', 

'for', 'para', 'students', 

'in', 'boarding 

schools', 'boarding 

schools', '.'], …) 

presiden joko 

widodo jokowi 

akan membangun 

rusun untuk para 
santri di pondok 

pondok 

pesantren… 

(president joko 

widodo jokowi will 
build flats for 

students at Islamic 

boarding 

schools…) 

presiden joko widodo 

tak hanya membangun 

rumah untuk pekerja 

masyarakat 
berpenghasilan rendah 

prajurit tni polri dan 

mahasiswa… 

(president joko widodo 

will not only build 
houses for low-income 

community workers, 

military police and 

students…) 

 

 

4. CONCLUSION 

A combination of preprocessing data cleaning and case folding produces the best system 

performance, as determined by the findings of several experimental scenarios for ATS utilizing IndoSum. 

This can be deduced from the findings as a result of the findings. The ROUGE score can be significantly 

affected by the thoroughness with which data is cleaned. Case folding, stemming, and stopwords produce 

results that are not quite as good when applied without prior data cleaning. The use of stemming and 

stopwords techniques can have a negative impact on the performance of an ATS because these techniques 

can reduce the amount of information taken from an influential sentence. If you only use a few of the 

preprocessing techniques, you will ensure the best performance possible for the system. To compare the 

preprocessing stages of each language, a similar analysis could be run using more than one data set as the basis.  
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