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 Playfair is the earliest known classical block cipher which is capable of 

taking two characters as a unit in the process of encryption and decryption. 

However, the cipher is suffering from vulnerability to many cryptanalysis 

attacks due to a lack of confusion and diffusion properties, an inability to 

handle numbers and special characters in the process of encryption and 

decryption, and a host of other deficiencies. Although several modifications 

and improvements had been done by different researchers, the emphasis has 

been on the modification of the key matrix to accommodate more characters 

to increase the keyspace. No attention has been given to increment in the 

size of the block that the Playfair cipher can handle at a time. In this paper, a 

modified Playfair (MPF) cryptosystem that is capable of handling different 

block sizes with high diffusion and confusion properties is developed. 

cryptanalysis of the developed cryptosystem was carried out and the results 

show that the MPF cryptosystem is resistant to Known plaintext attack, 

chosen-plaintext attack, chosen ciphertext attack, frequency analysis attack, 

autocorrelation attack, differential cryptanalysis attacks, entropy attacks, 

brute force attack, and can handle variable block sizes. 
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1. INTRODUCTION 

Diffusion and confusion properties are two desired attributes of a cipher that make it difficult to be 

broken by the use of statistical analysis [1], these properties are lacking in classical ciphers [2], [3]. The 

keyspace of the classical ciphers is also limited and this limitation makes it easy for the present-day 

computers which are equipped with parallelism, pipelining, and multiprocessing properties to break these 

ciphers in seconds using brute force attack. All these weaknesses summed up, made the researchers consider 

classical ciphers as weak and irrelevant for securing information in this present age [4]. However, most of the 

celebrated modern cryptography algorithms today are just improvements over these classical ciphers.  

For instance, one of the earliest known block ciphers is Playfair [5] but today we have several block ciphers. 

This reality has made many researchers such as [2], [6]-[11] and a host of other researchers worked on some 

of these classical ciphers in order to improve their security and thereby make them relevant in this 

information age. 

Many research works have been done on the improvement of the Playfair cipher. [12] and [13] 

implemented a 5x5 and an 8x8 square matrix key Playfair cipher respectively using a linear feedback shift 

register (LFSR). In the case of 8x8 square matrix key was used on DNA-encoded data. [9] modified 5x5 

square matrix key Playfair cipher into a 7x4. [4] refined 5x5 square matrix key Playfair cipher into a 16x16 

square matrix key Playfair cipher. 

https://creativecommons.org/licenses/by-sa/4.0/
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From the above discussion, it is obvious that a lot of work has been done in the modification of the 

Playfair cipher. However, attention has been on the modification of the size of the square key used in the 

Playfair cipher. None of the work in the literature review has made any attempt to increase the block size of 

the Playfair cipher from 2 characters it has been from inception. In this paper, the effort has been made to 

modify the existing 16 x 16 square matrix key Playfair cipher to handle variable block sizes. In addition, bit 

modification is introduced into the design of the developed modified Playfair cipher in order to introduce 

diffusion and confusion properties which are lacking in the existing Playfair cipher. 

The rest of the paper is organized as follows. In section 2, an overview of the Playfair cipher and a 

review of related works are discussed. Section 3 explains the design of the modified Playfair cryptosystem 

(MPF). The results and discussion for different experiments conducted on MPF are given in section 4. 

Section 5 gives the conclusion of the research work. 

 

 

2. OVERVIEW OF PLAYFAIR CIPHER AND REVIEW OF RELATED WORK 

In this section overview of the Playfair cryptosystem and a review of some modification works on 

the cipher are discussed. 

 

2.1.  Overview of Playfair cipher 

The Playfair cipher is an example of a polyalphabetic cipher and it was Charles Wheatstone who 

invented the cipher in 1854 but was named after lord Playfair who promoted its usage [14]. A polyalphabetic 

cipher treats a combination of two letters (digraphs) in the plaintext as a single unit and converts these 

digraphs into ciphertext digraphs using a key square. The key square is formed by writing a keyword 

horizontally with duplicate letters being removed. The rest of the square is filled with the remaining letters of 

the alphabet, in alphabetical order. For instance, if the keyword KEY is chosen as the key, the key square 

becomes 

 
K E Y A B 

C D F G H 

I/J L M N O 
P Q R S T 

U V W X Z 

 

Going by age of the cipher, mode of operation number of keys involved, and the number of 

characters that are being treated as a unit, the Playfair cipher can be classified to be an example of classical, 

substitution, symmetric, block cipher. Some peculiarity of the Playfair cipher as given by [15] include: 

i. No plaintext letter can be represented in the cipher by itself. 

ii. Any given letter can be represented by 5 other letters.  

iii. Any given letter can represent 5 other letters.  

iv. Any given letter cannot represent a letter that it combines with diagonally. 

v. It is twice as probable that the two letters of any pair are at the corners of a rectangle than as in the same 

row or column. 

 

A critical analysis of the Playfair cipher reveals the following weakness in the cipher: 

i. The Playfair with 5 X 5 matrix takes I and J as one character, again if a message in pairs of letters ends 

as an odd number instead of even, X is added at the end but neglected for decryption [16]. These 

assumptions are not the best for a good cryptography algorithm.  

ii. Only 26 letters can be used as the keyword. The keyspace is limited and this limitation makes the cipher 

an easy prey under brute force attacks in today’s computer. 

iii. Space between two words in the plaintext is not considered as one character;  

iv. The cipher cannot use special characters and numbers;  

v. Only uppercase alphabets are used for the encryption and decryption process 

vi. Double letters in plaintext as a pair end up with an X separator whereas the letter X itself gets used as 

another recognized letter 

vii. Due to pairwise encryption, the Playfair cipher is significantly harder to break than the Caesar cipher. 

Although the cryptanalysis of Playfair is considerably more difficult than that of monoalphabetic cipher, 

it is still possible with 600 possible digraphs. With 600 (25 x 24) possible digraphs, a considerably 

larger ciphertext is required in order to make it more difficult to break [1].  

viii. Playfair cipher is vulnerable to statistical analysis attack and several successful attacks such as [17]-[19] 

have been reported. 
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2.2.  Related work 
Several attempts have been made by researchers to overcome the weaknesses of conventional 

Playfair ciphers. A 6 × 6 matrix was proposed by [20] instead of 5 × 5 the conventional Playfair cipher. The 

construction of the matrix key is similar to that of the conventional technique but with a larger set of 

alphabets. This matrix is large enough to accommodate numerical digits (0 to 9) in addition to 26 English 

alphabets in the classic technique. In addition, the I/J was counted as two separate letters and each is placed 

in separate cells in order to avoid ambiguity at decryption time. Similarly, [9] proposed a 7 x 4 matrix key 

Playfair cipher where two symbols ‘*’ and ‘#” were added to create a one-to-one correspondence between 

plaintext and ciphertext A DNA and amino acids-based Playfair cipher algorithm where the user is capable of 

using any combination of alphabets, numbers, special characters, or even spaces in a plain-text was proposed 

by [21]. During the encryption process, the data is first represented in binary form, which is later transformed 

into sequences of DNA nucleotides. Subsequently, these nucleotides pass through a Playfair encryption 

process based on amino-acids structure. 

Hamad et al. [14] proposed a 16 x 16 modified Playfair cipher for the encryption and decryption of 

images. An integer number, a key, which acts as the seed value in a random permutation module was used to 

randomly construct the substitution matrix after which the Playfair encryption process is applied to pair of 

pixels. The resultant scrambled image is then XORed with a randomly generated mask that has the same 

dimensions as the scrambled image. The reverse was carried out during the decryption process. The approach 

perfectly produced distinct cipher images even with similar keys and the decryption process obtained the 

original image from the cipher image. Hassoun et al. [22] used a bio-molecular technique to enhance the 

Playfair algorithm. A new key creation method out of a key using two secure lock-up tables for constructing 

the matrices for the encryption/decryption processes was suggested. The built system can be used in 

encrypting and decrypting big data. 

An adaptive Playfair cryptography algorithm was proposed by [10]. The scheme employs the use of 

three keys and the general rule of the original Playfair cipher is followed. The modified encryption phase is 

depending on applying the odd pairs of the message to the first key matrix and applying the even pairs of the 

message to the second key matrix. Then the result is XORed with the third key. The decryption process 

reverses the encryption process to obtain the plaintext from the ciphertext. 

In the reviewed literature the emphasis of the researchers has been on the modification of the 

Playfair matrix key. Either increase the number of characters or introduce the technique of permutations to 

ensure improvement over the conventional Playfair cipher. None of the existing works has ever discussed 

how the size of the block of Playfair cipher can be increased from 2 to other sizes. Therefore, in this paper, a 

modification to the existing Playfair cipher which will enable variable block sizes to be handled by the cipher 

is introduced. 

 

 

3. DESIGN OF MODIFIED PLAYFAIR CRYPTOSYSTEM 

3.1.  Key generation process in modified Playfair cryptosystem 

Key generation involves the generation of secret keys and Playfair keys. To generate a secret key in 

the MPF cryptosystem, only the block size is to be specified. The algorithm uses the supplied block size to 

generate a random number from which different information is derived to carry out the encryption and 

decryption process. The algorithm for generating the random key in modified Playfair MPF is given in 

Algorithm 1. 

 

Algorithm 1: Pseudocode for MPF key generation process 

 Module MPFkeygen 

Input  

Block size: an integer 

Output: key: an integer 

Variables 

Bitsize: an integer  

1. BEGIN 

2. GET blocksize 

3. CALCULATE Bitsize = blocksize * 8 

4. IF Bitsize < 128 THEN 

a. DISPLAY error message 

ELSE 

b. LET key = GENERATE a random number whose size is Bitsize 

c. OUTPUT key 

ENDIF 

5. END 
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Playfair key is generated from the secret key generated in Algorithm 1. Playfair key is a 16 x 16 

matrix of ASCII characters. Information is generated from the secret key obtained from Algorithm 1 to 

generate an array of random integers (the procedure for generating the random number is given in Algorithm 

3) which forms the pattern to be used in the reshuffling of the ASCII characters before they are put in 16 x 16 

matrix. Algorithm 2 describes the procedure for generating the Playfair key. 

 

Algorithm 2: Pseudocode for generating Playfair key in modified Playfair cryptosystem 

 Module generatePlayfairkey (key) 

Output: Playfairkey: ASCII character in 2D (16 x 16) array of characters 

1. BEGIN 

2. LET alphabet = [CHARACTER[i], FOR I = 0.. 255] 

3. LET keyspace = LENGTH(alphabet) 

4. LET confusionkey = CALL randgen(key, keyspace) 

5. LET playarray = CALL reshuffleforencryption(confusionkey,alphabet) 

6. LET Playfairkey = CONVERT playarray to 2D [1..16, 1..16] 

7. END 

 

Algorithm 3: Pseudocode for generating array of random numbers in MPF cryptosystem 
 Module randomnumgenerator (seedn, keyspace) 

Output: confusionkey: 1D array of random integers 

1. BEGIN 

2. INITIALISE random number generator using seedn 

3. LET confusionkey = GENERATE distinct keysplace random numbers 

4. END 

 

3.2.  Reshuffling of characters and bits of key, plaintext, and ciphertext characters/bits 
As one of the measures to introduce confusion and diffusion in MPF Playfair key, plaintext and 

ciphertext are reshuffled. The permutation is done during encryption and decryption processes at both 

character and bit levels. Algorithm 4 and 5 describe how reshuffling of characters/bits are carried out in MPF 

during encryption and decryption processes respectively. An array of characters together with the pattern to 

be used for reshuffling is given to the function which produces the reshuffled array of characters/bits. 

 

Algorithm 4: Pseudocode for reshuffling characters or bits in MPF 

 Module Reshuffleforencryption (Textmatrix, key) 

Output Arrangedtext[1..C]: 1D array of characters  

Variables 

Integer: k, col, x, C  

message[1..C]: arrays of characters 

1. BEGIN 

2. LET C = LENGTH(Textmatrix) 

3. INITIALIZE message as empty matrix 

4. LET k = 1 

5. FOR col = 1 TO C 

6. LET x = key[col] 

7. LET message( k) = TextMatrix[x]  

8. LET k = k + 1 

9. END FOR  

10. LET arrangedtext = message 

11. OUTPUT arrangedtext 

12. END 

 

Algorithm 5: Reshuffling of characters during the decryption process  

 Module Reshufflefordecryption (ciphertext, key) 

Output: plaintext[1..C]: 1D array of characters  

Variables 

Integer: col, x, C  

message[1..C]: arrays of characters 

1. BEGIN 

2. LET C = LENGTH(ciphertext) 

3. INITIALIZE message as empty matrix 

4. FOR col = 1 TO C  

5. LET x = key[col] 

6. LET message( x) = ciphertext[col]  

7. LET k = k + 1 

8. END  

9. LET plaintext = message 

10. OUTPUT plaintext 

11. END 
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3.3.  Bit manipulation in MPF 

The aim of introducing bit manipulation is to ensure proper confusion and diffusion in MPF. The bit 

modification process employs the use of bit grouping, bit permutation, and XOR operation to ensure the 

proper mixing of key and plaintext bits. Algorithm 6 describes bit modification during the encryption process 

while Algorithm 7 is the description of the reverse process of Algorithm 6 during the decryption process. 

 

Algorithm 6: Pseudocode to perform bit manipulation during the encryption process 
Module manipulatedbits = Bitmanipulation(blockbits, randseed) 

Input: block of binary digits, randomseed 

Output: manipulatedbits 

1. BEGIN 

2. t = CONVERT randseed to its binary form 

3. lt = LENGTH(t)  

4. IF lt< 12 lt = 12 ELSE IF lt > 16 lt = 16 

5. Randkeys = GENERATE array of lt random seeds using randseed as seed 

6. Lnibble = empty string 

7. Rnibble = empty string 

8. bitsize = LENGTH (blockbits) 

9. FOR i = 1 to bitsize, taking 8 bits at a time 

i. Abyte = blockbits(i:i+7) 

ii. Lnibble = CONCATENATE (Lnibble, Abyte(1:4)) 

iii. Rnibble = CONCATENATE(Rnibble, Abyte(5:8)) 

END FOR 

10. FOR j = 1 to lt 

i. Seed1 = Randkeys(j) 

ii. LET xornibble = Lnibble XOR Rnibble 

iii. LET Fullbyte = CONCATENATE(xornibble, Rnibble) 

iv. confusionkey = GENERATE bitsize random integer using seed1 as seed 

v. transposedbits = CALL Reshuffleforencryption(Fullbyte, confusionkey)  

vi. LET Lnibble = transposedbits(1: bitsize/2) 

vii. LET Rnibble = transposedbits(bitsize/2 +1 : bitsize) 

END FOR 

11. Manipulatedbits = transposedbits 

12. END 

 

Algorithm 7: Algorithm for reverse bit modification during the decryption process 
Module blockbits = Reversebitmodification(binX, randseed)  

Input: block of binary digits, randseed 

Output: blockbits  

1. BEGIN 

2. t = CONVERT randseed to its binary form 

3. lt = LENGTH(t)  

4. IF lt< 12 lt = 12 ELSE IF lt > 16 lt = 16 

5. Randkeys = GENERATE array of lt random seeds using randseed as seed 

6. Bitsize = LENGTH(binX) 

7. reversedbinX = binX 

8. FOR i = lt to 1 

i. seed1 = Randkeys(i) 

ii. confusionkey = GENERATE bitsize random integer using seed1 as seed 

iii. transposedbit = CALL Reshuffleforencryption(reversebinX, seed1) //algorithm 5c 
iv. LET lnibble = transposedbit(1: bitsize/2) 

v. LET rnibble = transposedbit(bitsize/2 +1: bitsize) 

vi. LET xornibble = lnibble XOR rnibble 

vii. LET reversebinX = CONCATENATE(xornibble, rnibble) 
END FOR 

9. LET x = bitsize/2 

10. LET m1 = reversebinX(1:x) 

11. LET m2 = reversebinX(x+1:bitsize) 

12. INITIALIZE msg as empty string 

13. FOR j = 1 to x taking 4 bits at a time 

i. LET L = m1(j:j+3) 

ii. LET R = m2(j:j+3) 

iii. LET msg = CONCATENATE(msg, L, R) 
END FOR 

14. blockbits = msg 

15. END 

 

 

 

 

 

 



                ISSN: 2722-3221 

Comput Sci Inf Technol, Vol. 3, No. 1, March 2022: 51-64 

56 

3.4.  Application of conventional Playfair technique 
MPF uses the conventional Playfair technique in the formation of the characters of the ciphertext 

from plaintext as well as the derivation of plaintext characters from the ciphertext. A block of characters 

together with the Playfair key is supplied to the module which carries out the conventional Playfair technique 

of encryption and decryption. Algorithms 8 and 9 describe the conventional Playfair technique during 

encryption and decryption processes respectively. 

 

Algorithm 8: Pseudocode for encryption in Playfair cryptosystem 

 Module Playfairencryption(Blocktext, Playfairkey) 

Output: ciphertext: string of characters of length C 

1. BEGIN 

2. Break the Blocktext into pairs of letters, refinedpair 

3. DO FOR each pair P in refinedpair to form ciphertext 

a. If the two letters of P appear on the same row in the ksquare, replace each 

letter by the letter immediately to the right of it in the square (cycling 

round to the left hand side if necessary) 

b. If the two letters appear in the same column in ksquare, replace each letter 

by the letter immediately below it in ksquare (cycling round to the top of the 

square if necessary 

c. If the two letters of p are on different rows and columns, form rectangle for 

which the two letters of P are two opposite corners. Replace each letters in P 

with the letter that forms the other cornerner of the rectangle that lies on 

the same row as that of letter in P. 

END FOR 

4. OUTPUT ciphertext 

5. END 

 

Algorithm 9: Pseudocode for decryption in Playfair cryptosystem 
 Module PlayfairDecryption 

Input ciphertext: string of characters of length C 

key: string of character with no repeating letters 

Output: ciphertext: string of characters of length C 

1. BEGIN 

2. Generate key square ksquare 

3. Break the ciphertext into pairs of letters, refinedpair 

4. DO FOR each pair P in refinedpair to form plaintext 

a. If the two letters of P appear on the same row in the ksquare, replace each 

letter by the letter immediately to the left of it in the square (cycling 

round to the right hand side if necessary) 

b. If the two letters appear in the same column in ksquare, replace each letter 

by the letter immediately above it in ksquare (cycling round to the down of 

the square if necessary 

c. If the two letters of p are on different rows and columns, form rectangle for 

which the two letters of P are two opposite corners. Replace each letters in P 

with the letter that forms the other corner of the rectangle that lies on the 

same row as that of letter in P. 

END FOR 

5. OUTPUT plaintext 

6. END 

 

3.5.  Key modification in MPF 

No two blocks use the same key in MPF. The key that is used for the first block is modified and the 

newly generated key is used for the second. This process continues until all the blocks are treated. The key 

modification process employs the use of two modules. The first module in Algorithm 10 uses the information 

derived from the secret key to generate a seed that is used for the initialization of the random number 

generator. Algorithm 11 is the description of how a new key is generated from the previous one. 

 

Algorithm 10: Generate random seed 
Module genrandomseed (binarykey) 

Output: randomseed 

1. BEGIN 

2. Blocksize = DETERMINE block size from the binarykey 

3. DETERMINE number of 1’s and 0’s in the binarykey, x1, x2 

4. x2 = x1 + Blocksize 

5. k = binarykey[x1…x2] 

6. k = CONVERT k to decimal number 

7. IF k is greater than 232 THEN k = k MOD 232 -1 

8. randomseed = k 

9. END 
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Algorithm 11: Generate new key  
Module GETNEXTKEY (randseed, binarykey) 

Output: newbinkey 

1. BEGIN 

2. x = LENGTH(binarykey) 

3. binseed = CONVERT randseed to binary number 

4. k = CONCATENATE(binseed, binarykey) 

5. newbinkey = k[1..x] 

6. END 

 

3.6.  Encryption and decryption modules in MPF 

Each block of plaintext passes through the encryption module MPlayfair in order to generate 

ciphertext for the block. Algorithm 12 describes how a block of plaintext is encrypted in MPF. 

 

Algorithm 12: Pseudocode for encryption module in modified Playfair cryptosystem 
 Module MPlayfair(blocktext, binkey, radno) 

Output: encryptedblock: 1D array of ASCII characters 

1. BEGIN 

2. LET Playfairkey = CALL generatePlayfairkey(radno) 

3. LET binp = CONVERT blocktext to binary form 

4. LET binplayxor = binp XOR binkey 

5. LET mbinplayxor = CALL Bitmanipulation (binplayxor,radno) 

6. LET charplayxor = CONVERT mplayxor to ASCII characters 

7. LET encryptedblock = CALL Playfairencryption (charplayxor, Playfairkey) 

8. END 

 

Each block of ciphertext passes through the decryption module DMPlayfair in order to retrieve the 

plaintext block from the ciphertext block. Algorithm 13 describes how a block of ciphertext is decrypted in 

MPF. 

 

Algorithm 13: Pseudocode for decryption module in modified Playfair cryptosystem 

 Module DMPlayfair( blocktext, binkey, radno) 

Output: decryptedblock: 1D array of ASCII characters 

1. BEGIN 

2. LET Playfairkey = CALL generatePlayfairkey(radno) 

3. Playdecryptedblock = CALL Playfairdecryption(Blocktext,Playfairkey) 

4. LET binp = CONVERT Playdecryptedblock to binary form 

5. LET mbinplayxor = CALL reversbitmanipulation (binp,radno) 

6. LET binplayxor = mbinplayxor XOR binkey 

7. LET charplayxor = CONVERT binplayxor to ASCII characters 

8. END 

 

3.7.  MPF encryption and decryption process 

The MPF encryption process is depicted as shown in Figure 1. MPF takes plaintext and a secret key 

from the user as input. The block size is determined by the key. The plaintext is then divided into blocks B1, 

B2, …, Bn. The number of blocks n is determined and then the key is used to generate array S [S1, S2, …, 

Sn] of random integers of n elements. A new key is generated using module Getnextkey that takes the key 

and element Si from S. The newly generated key Ki, the plaintext block Bi and random number S[i] are then 

passed as parameter to module MPlayfair which produces the ciphertext Ci for the plaintext block Bi. The 

process repeats itself n number of times. The cipher blocks Ci where i = 1 to n is concatenated together to 

form the ciphertext. The description of the MPF encryption process is given in Algorithm 14. 

The MPF decryption process is depicted as shown in Figure 2. The MPF decryption process takes 

ciphertext and secret key from the user as input. The block size is determined by the key. The ciphertext is 

then divided into blocks C1, C2, …, Cn. The number of blocks n is determined and then the key is used to 

generate array S[S1, S2, …, Sn] of random integers with n elements. A new key is generated using module 

Getnextkey that takes key and element Si from S. The newly generated key Ki, the ciphertext block Ci and 

random number S[i] are then passed as a parameter to module DMPlayfair which produces the plaintext Bi 

for the cipherblock block Ci. The process repeats itself n number of times. The plaintext blocks Bi where i = 

1 to n are concatenated together to form the plaintext. Algorithm 15 describes the MPF decryption process. 
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Algorithm 14: Modified Playfair encryption process 
Input: plaintext, key 

Output: ciphertext 

1. BEGIN 

2. CONVERT key to its binary form binkey 

3. Blocksize = LENGTH(binkey)/8 

4. DETERMINE the number of block nblocks in the plaintext 

5. CONVERT key to its binary form binkey 

6. randomseed = CALL genrandomseed(binkey) 

7. INITIALIZE random number generator using randomseed 

8. Randomkeys[1..nblocks] = GENERATE array of size nblocks of random integers 

9. INITIALIZE encryptedtext as EMPTY STRING 

10. FOR i = 1 TO LENGTH(plaintext) taking blocksize characters at a time DO 

11. LET block = plaintext ( i to i + blocksize -1) 

12. binkey = CALL GETNEXTKEY(binkey, Randomkeys(i))  

13. mPlayfairblock = CALL MPlayfair( block, binkey, Randomkeys(i))  

14. LET encryptedtext = CONCATENATE( encryptedtext, mPlayfairblock) 

END FOR 

15. LET ciphertext = encryptedtext 

16. OUTPUT ciphertext 

17. END 

 

Algorithm 15: Modified Playfair decryption process  
Input: ciphertext, key 

Output: plaintext 

1. BEGIN 

2. CONVERT key to its binary form binkey 

3. Blocksize = LENGTH(binkey)/8 

4. DETERMINE the number of block nblocks in the ciphertext 

5. randomseed = CALL genrandomseed(binkey) 

6. INITIALIZE random number generator using randomseed 

7. Randomkeys = GENERATE array of size nblocks of random integers 

8. LET Randomkeys = Randomkeys[1..nblocks] 

9. INITIALIZE encryptedtext as EMPTY STRING 

10. FOR i = 1 TO LENGTH(ciphertext) taking blocksize characters at a time DO 

i. LET block = ciphertext ( i to i + blocksize -1) 

ii. binkey = CALL GETNEXTKEY(binkey, Randomkeys(i))  

iii. mPlayfairblock = CALL DMPlayfair( block, binkey, Randomkeys(i))  
iv. LET decryptedtext = CONCATENATE( decryptedtext, mPlayfairblock) 

END FOR 

11. LET plaintext = encryptedtext 

12. OUTPUT plaintext 

13. END 

 

 

 
 

Figure 1. Encryption process of MPF 
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Figure. 2 MPF decryption process 

 

 

4. RESULTS AND DISCUSSIONS 

Analysis of MPF was carried out on Hewlett Packard laptop with AMD E1-1200 APU with 

Radeon(tm) HD Graphics 1.40 GHz, 4.00 GB (3.59 GB usable), 64-bit Windows 10 operating system, x64-

based processor. The Scientific Python Development Environment, Copyright © 2009-2020 Spyder was used 

throughout the development and analysis 

 

4.1.  Encryption 

Samples of plaintext and the obtained ciphertexts when the plaintexts are made to pass through the 

MPF encryption algorithm are given in Table 1. The sample outputs from the encryption function show that 

the repetitive terms in the plaintext are excluded from the encrypted text and it can never be figured out just 

from the encrypted text that there was any repetition in the plaintext. Hence, the use of repetitive terms in the 

plaintext cannot assist cryptanalysts in obtaining any information that can be useful for attacking the MPF 

cipher presented in this study 

 

 

Table 1. Sample plaintext and the obtained ciphertext from modified caesar cipher 

Plaintext to be encrypted Encrypted text 

wwwwwwwwwwwwwwww w)«#\x11ÙªöÏ®2B¶aË\x1c 

aaaaaaaabbbbbbbbddddwwwwww \x04\x9au^T\xa0è\x9a'H|ÃÖMî\x98þ×\\[sûtÎÜ! 

God is good all the time. great is 

the lord. 

Ìã »Kë\x85çè\x01Þc2äÒ\x08\x80*2h\x14´CX\x86VQ\x81Í#_\x8dz 

\x02'ò©AØ\x98Fn\x17\x1bºÏZ 

 

 

4.2.  Resistance to primitive security attacks 

Primitive security attacks include known-plaintext attack (KPA), chosen-plaintext attacks (CPA), 

chosen-ciphertext attacks (CCA). These attacks are effective if the relation between plaintext and ciphertext 

is one-to-one [23], [24]. In order to ascertain the resistance of MPF to these primitive attacks, a sample of 

plaintext that spans 4 blocks is encrypted using MPF. The ciphertext of each block is examined in order to 

find out if the relationship between plaintext and ciphertext is one-to-one in MPF. The results of the 

experiment are shown in Table 2. 

As can be seen from the resulting block ciphertext in Table 2, though the plaintext is the same for 

the four blocks different ciphertexts are obtained for each block. These results show that the relationship 

between the plaintext and ciphertext is not a one-to-one relationship. Hence, MPF is resistant to KPA, CPA, 

and CCA. This result also implies that a dictionary attack on MPF will do no better than a mere brute force 

attack. Hence the MPF is resistant to dictionary attack. 
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Table 2. Relationship between plaintext blocks and ciphertext blocks in MPF 

Plaintext: GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG 

Block Block plaintext Block ciphertext  

1 GGGGGGGGGGGGGGGG ÀXù\x85v|\x0b\x8d¥|\x92q\x94\x12ÉN 

2 GGGGGGGGGGGGGGGG ó0s\x99\x93Ú0W\x17ië¡pÖÔ\x01 

3 GGGGGGGGGGGGGGGG âÁ\x02½>\x8eè\x95òÖ\x1eëÛó[õ 

4 GGGGGGGGGGGGGGGG c¯\x14U½,\x8a\x8c\x85ÐEhÎ\x8eË\x08 

 

 

4.3.  Spectral frequency analysis of MPF 

Frequency analysis is a type of ciphertext attack that is a passive traffic analysis scenario [25] and it 

can assist the cryptanalyst in getting information about the key, the plaintext, or both. Spectra frequency 

analysis of MPF is carried out in order to test whether or not it is resistant to frequency analysis attacks. An 

experiment where different strings were encrypted was set up in order to carry out a spectra frequency 

analysis of characters of both plaintext and ciphertext. The results of the experiment are shown in Table 3. 

Comparing the frequency of the plaintext with that of the ciphertext, it can be said that the frequency 

of ciphertext letters is uniform while that of plaintext is not uniform. A cipher that produces ciphertext that 

has a uniform frequency of character is said to be resistant to frequency analysis attacks. Hence, MPF is 

resistant to frequency analysis attacks. 

 

 

Table 3. Comparison of frequency analysis of plaintext and ciphertext in MPF 

Plaintext Ciphertext 
Spectral analysis of frequency of characters in the 

string of plaintext and ciphertext 

aaaaaaaabbbbbbbbddddw
wwwwwddssww 

\x1f\x8d\x1b\x12¡{;ØnÕ¯[Ú¤Ø\x1
1\x9c±°C]I\x8a;\x88mZÐ\x07öÒ 

 
GGGGGGGGGGGGGGG
GGGGGGGGGGGGGGG

GG 

ù\x81\x87´c;\x02mmc±fz\x0b-
×µ\x96\x15\x03@}ú'P\x84WdØÚ\

x08\x1d 

 

 

 

4.4.  Differential cryptanalysis of MPF 

The robustness of MPF against differential attacks was tested. Two similar plain texts were 

encrypted using the same key and the relation between the two ciphertexts was determined. Two metrics net 

pixel change rate (NPCR) and unified average changing intensity (UACI) were used to determine the 

robustness of modified Caesar against differential attack. NPCR determines the number of characters that are 

different between two ciphertexts C1 and C2 from two similar plaintexts. The NPCR for two ciphertexts C1 

and C2 of length l was calculated (1). 
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𝑁𝑃𝐶𝑅 =
∑ 𝑊(𝑖)𝑙

𝑖=1

𝑙
× 100  (1) 

 

where 𝑊(𝑖) = {
0, 𝑖𝑓 𝐶1(𝑖) = 𝐶2

1, 𝑖𝑓 𝐶1(𝑖) ≠ 𝐶2
 

 

The UACI on the other hand represents the intensity difference average between two ciphertexts C1 

and C2. Like NPCR, UACI is also calculated in percentage. The UACI of 100% means that both ciphertexts 

are different in amplitude. The UACI of two ciphertexts C1 and C2 of length l was calculated using (2). 

 

𝑈𝐴𝐶𝐼 =
100

𝑙×256
∑ |𝐶1 − 𝐶2|𝑙

𝑖=1  (2) 

 

The two ciphertexts C1 and C2 were generated for the calculation of NPCR and UACI by 

encrypting a sample of chosen plaintext using one secret key to obtain ciphertext C1. The first symbol of the 

plaintext was then changed to an arbitrary symbol and the encryption process was repeated to obtain 

ciphertext C2. Table 4 shows some samples of plaintexts, the generated ciphertexts, and the calculated NPCR 

and UACI. 

A cipher that causes a big change in ciphertext as a result of a little change in plaintext is said to be 

resistant to differential attacks [2]. Although the NPCR and UACI vary with different keys, the values of 

NPCR and UACI from the samples shown in Table 4 show that the MPF is resistant to differential attack as 

100% and 96.875% of the ciphertext characters changed as a result of a change of one character of the 

plaintext in sample 1 and 2 respectively. The UACI values obtain also establish that MPF is resistant to 

differential cryptanalysis. 

 

 

Table 4. Sample of some calculated NPCR and UACI from encryption in MPF 

Plaintext 1 Plaintext 2 C1 C2 
NPCR 

(%) 

UACI 

(%) 

GGGGGGGGGG

GGGGGG 

ÇGGGGGGGGG

GGGGGG 

]\x9a\xa0]\x9f\x11Lö\x98%ío

Ï\x16\x83\x92 

\'ºíZð\x80oðÅ8Q7\x1cû¡a\x93 100 33.19 

Come and be my 

friend in deed.. 

Ãome and be my 

friend in deed.. 

\x0e6Ïn\x95L;\x8fu%èÍ\x84D

ä3¨hüÄ·\x01òoÆV\rÞÒã²û. 

®ø¥\x93'ñ\x8f£\x83 

\x8dÍ°úì\x14\x87\x1aZU\x86\x9

c¥ãáÐ+\x93\x8cä%p 

96.87

5 

31.53 

 

 

4.5.  Information entropy analysis of modified Caesar 

Information entropy of a message m encrypted with 2𝑁 possible symbols is calculated by (3), 

 

 𝐻(𝑚) =  ∑ 𝑃(𝑚𝑖
2𝑁−1
𝑖=0 ) log2 (

1

𝑃(𝑚𝑖)
) (3) 

 

where N represents the number of bits of message m, 2𝑁represents all possible symbols, 𝑃(𝑚𝑖) represents 

the probability of 𝑚𝑖, log2 represents the base 2 logarithm and H(m) is the entropy.  

In an ideal situation, a message m encrypted with 2𝑁 possible symbols will have entropy 𝐻(𝑚) =
𝑁.  MPF uses the whole of 256 ASCII symbols, so the maximum entropy of the encrypted text is expected to 

be approximately 7.97. A sample text which consists of 219 words, 1, 258 characters (with no space), and 1, 

476 (characters with spaces) is encrypted and the entropy of the plaintext and that of the obtained ciphertext 

were calculated. The obtained results are given in Table 5. 

Comparing the calculated entropy of the ciphertext (7.86) with the expected entropy value (7.97), it 

can be said that MPF has an entropy value very close to the maximum value. This means that the diffusion 

process of the MPF is strong. A good cipher with efficient diffusion ensures that all the symbols of the 

plaintext is modified when it is encrypted. An inefficient diffusion stage will make the ciphertext have many 

identical symbols and therefore make the cipher vulnerable to entropy attack. Hence MPF is resistant to 

information entropy analysis. 

 

 

Table 5. Entropy of plaintext and ciphertext 
Text type Entropy 

Plaintext 4.25 
ciphertext 7.86 
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4.6.  Autocorrelation analysis of modified caesar 

Autocorrelation is used for calculating the similarity between two sequences: the plaintext and the 

plaintext displaced t positions. In classical ciphers, autocorrelation can be used to determine the length of a 

secret key. If the autocorrelation of the ciphertext is uniform and reduced compared with the autocorrelation 

of the plaintext, the cipher is said to be resistant to autocorrelation attacks. The graph of the autocorrelation 

of the text in sub-section 4.5 and the autocorrelation of the obtained ciphertext when MPF is used for 

encryption is given in Figure 3. The graph in Figure 3 shows that the autocorrelation of the ciphertext is 

uniform and reduced compared to the autocorrelation of the plaintext. Hence MPF is resistant to 

autocorrelation cryptanalysis attacks. 

 

 

 
 

Figure 3. Sample of the graph of autocorrelation of a given plaintext and ciphertext 

 

 

4.7.  Resistance of MPF to brute force attack 

The most popular attack used on cryptosystems is the exhaustive search attack or brute-force attack 

[26]. This attack requires that the attacker tries each possible key until the cryptosystem is broken. Since 

attackers usually have access to fast computers like supercomputers, the keyspace of a cryptosystem that will 

resist brute force attacks should be very large. Álvarez and Li [27] suggests that a cryptosystem should have 

more than 2100 keyspace (all strong) for it to be resistant to brute force attack nowadays. Although the 

keyspace of MPF can be varied, the keyspace is designed to accommodate a large keyspace that is resistant to 

brute force attacks. Considering the actual technology, the fastest supercomputer today (summit) is capable 

of 200 PFLOPS (1015 floating-point operations per second) or 200,000 trillion calculations per second [3].  

It will take this supercomputer 1.99 x 1023 years to break a cryptosystem that has the keyspace of 2100 

according to (4) if it is assumed that the computer is capable of 1000 FLOPS per checking. The least 

keyspace of MPF is set to 2128. 

 

𝑌𝑒𝑎𝑟𝑠 =  
𝑘𝑒𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ×1000

𝐹𝐿𝑂𝑃𝑆
× 31536000  (4) 

 

4.7.1. Comparison of MPF with existing versions of Playfair 

The existing versions of various modifications to Playfair cipher are compared with MPF. The 

comparisons are based on the number of characters (NC) that are accommodated in each version, the size of 

the matrix key (MS), and the number of characters that can be handled as the size of the block. (BS). Table 6 

summarizes the results of the comparison of MPF with the existing modifications to the Playfair cipher. 

 

 

Table 6. Comparison of MPF with existing modifications to payfair cipher 
Playfair cipher version NC MS BS 

[14] 256 16 x 16 2 

[9] 28 7 x 4 2 
[4] 256 16 x 16 2 

[10] 256 Not specified 2 

[28] 49 7 x 7 2 
[29] 25 5 x 5 2 

[22] 36 9 x 4 2 

MPF 256 16 X 16 Variable (16 or more) 
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5. CONCLUSION 

Playfair cipher was a powerful cipher in the olden days but it is losing its potency nowadays because 

of the sophistication in computing devices which possess features that can make them break ciphers such as 

Playfair within a few seconds. Researchers have worked on and proposed several modified versions of the 

cipher but attention has been on modification of the key matrix sizes and perhaps different techniques to 

introduce diffusion and confusion properties into the cipher. However, little or no effort has been made on 

how the size of the block to be treated as a unit could be increased. A modified version of the Playfair 

cryptosystem that is capable of handling different block sizes is developed and cryptanalysis was carried out 

on the cipher. The results from the analysis show that the developed cipher, MPF, is resistant to various 

cryptanalysis attacks. With this excellent performance, the MPF cryptosystem can be used for securing data 

in the present age.  
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