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 Formal concept analysis (FCA) is today regarded as a significant technique 

for knowledge extraction, representation, and analysis for applications in a 

variety of fields. Significant progress has been made in recent years to 

extend FCA theory to deal with uncertain and imperfect data.  The 

computational complexity associated with the enormous number of formal 

concepts generated has been identified as an issue in various applications. In 

general, the generation of a concept lattice of sufficient complexity and size 

is one of the most fundamental challenges in FCA. The goal of this work is 

to provide an overview of research articles that assess and compare 

numerous fuzzy formal concept analysis techniques which have been 

suggested, as well as to explore the key techniques for reducing concept 

lattice size. as well as we'll present a review of research articles on using 

fuzzy formal concept analysis in ontology engineering, knowledge discovery 

in databases and data mining, and information retrieval. 
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1. INTRODUCTION 

The mathematical foundation of formal concept analysis (FCA) is based on lattice theory [1]. The 

data analysis in FCA begins with a supplied cross table, wherein every row corresponds to the set of objects, 

every column refers to a collection of attributes, and the values of the cross-table indicates the relationship 

between them. The concept lattice is acknowledged as one of the primary outputs of formal concept analysis, 

reflecting generalization and specialization between the cross table's created formal concepts [2]. Formal 

concept is a fundamental unit of concept that play an essential role in knowledge processing containing the 

extent part (sets of objects) and the intents part (corresponding common attributes). FCA's traditional setting 

considers the context to be a table., where the rows in the context representing the domain objects, and the 

columns of the context refer to the attributes for each object in the domain under the study. The cross-table 

(context) inputs carrying the values ones and zeros (X symbol\ empty) based on whether or not an object 

possesses the attribute. As a result, the basic formal concept analysis is superior for the attributes that has a 

crisp value (0s or 1s). At the same time, features might be vague rather than precise(crisp). FCA has 

successfully been enhanced with a fuzzy setting to accommodate the ambiguity and vagueness in data. For 

example, if we ask if a man with a height of 170 cm is tall, we'll probably get an answer like "not totally tall 

but almost tall" or "to a high degree tall,". Lotfi Aliasker Zadeh introduced such a notion in fuzzy logic [3] to 

assign a truth level of belonging to an object based on the fuzzy attributes that the object contains. An L-scale 

of truth degrees (degree of belonging) is used to compute the degrees of belongings. One of the most popular 

https://creativecommons.org/licenses/by-sa/4.0/
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L-scale selections is the interval [0, 1]. To return to our earlier example, a guy of (170 cm) in height is tall to 

a level of 0.7. As a result, rather than 0 or 1, as in traditional FCA, the context values are becoming degrees 

from the interval [0,1]. 

FCA's immense potential is promoted by the concept lattice generated by the collection of formal 

concepts which retrieved from the formal context of a domain under the study. In reality, the lattice is used in 

the vast majority of applications., which is often depicted by a line diagram (Hass diagram). Large numbers 

of formal concepts might perhaps be produced from a tiny quantity of data [4]. In reality, FCA may lead to a 

great deal of computational complexity, and even with a small dataset, the resulting concept lattice can be 

huge [5]. For many applications, the computational cost is still too high. Furthermore, examining the final 

lattice might be challenging due to the enormous number of formal concepts and the intricacy of concept 

interactions [6]. In fact, obtaining a concept lattice of adequate complexity and scale is one of the most 

critical obstacles of employing formal concept analysis [4]. 

Concept lattice reduction strategies come in many different forms., each with its own set of 

advantages and disadvantages. Some of them purge the concept lattice from redundant information. 

Generally, their main goal is to seek the smallest number of objects or attributes which preserve the hierarchy 

order of the original concept lattice [7], [8]. Other techniques aim to create an abstraction of the concept 

lattice, or to achieve a high level of simplification that reveals the genuinely important aspects [9]. Lastly, 

some types of techniques employ a relevance criterion to select formal concepts, objects, or attributes [10]. 

The primary goal of this work is to clarify the relationship between the various approaches to Fuzzy formal 

concept analysis and to discuss the main issues associated with using it. The second direction in this work is 

to present a review of research articles on using fuzzy formal concept analysis in various applications such as 

knowledge discovery in databases and data mining, information retrieval, and ontology engineering. 

The remainder of this paper is composed: In section 2 will give a theoretical background to the 

fuzzy formal concept analysis. In section 3, we will go over and compare the most important approaches for 

fuzzy formal concept analysis that have been proposed. Section 4 will provide a quick overview of the use of 

fuzzy formal concept analysis in several fields. In section 5, we will discuss the main techniques to reduce 

the size of concept lattice that considered as a main issue in several applications that used FCA as an 

analytical method. 
 

 

2. FUZZY FORMAL CONCEPT ANALYSIS 

Formal concept analysis is a theoretical framework that provides a foundation for conceptual data 

analysis and knowledge processing. It allows the representation of the relationships between objects and 

attributes in a specific domain [11]. Formal concept analysis offers a different graphical representation of 

tabular data that is easier to navigate and use [1]. A more detailed overview is provided in [1]. 
 

2.1.  Formal concept analysis (FCA) 

The ideas of a formal context are taken into account by FC), which describes the attributes of every 

object from the domain. Accordingly, a formal context may be conceptualized as a binary connection 

between both the object group and the attribute group, with values of 0 and 1. A cross-table (formal context) 

is given to FCA at the beginning, and it is described as a triple 𝐾 =  (𝐺, 𝑀, 𝐼), where 𝐺 denotes a group of 

objects, 𝑀 denotes a set of attributes, and 𝐼 denotes a binary connection (𝐼 ⊆ 𝐺 ×  𝑀). (𝑔, 𝑚) ∈ I, can be 

read as an object 𝑔 has the attribute 𝑚. 

The usage of the words "object" and "attribute" is instructive because it may be advantageous in 

many situations to select things that resemble other objects as formal objects and then select their properties 

as formal attributes. In the field of information retrieval, documents, for instance, might be thought of as 

being object-like and phrases, as being attribute-like. As seen in Figure 1(a) from [11], the context is 

frequently represented as a cross table, with rows denoting formal objects, columns denoting formal 
attributes, and crosses denoting interactions between them. 

 

Definition 1. Formal Concept, a context 𝐾 = (𝐺, 𝑀, 𝐼), for 𝐴 ⊆  𝐺 and for 𝐵 ⊆ 𝑀 applying a 

derivation operator: 
 

A′ = {m ∈ M |gIm for ∀ g ∈ A} (1) 
 

B′ = {g ∈ G |gIm for ∀ m ∈ B} (2) 
 

The set of all objects having all of the attributes from 𝐵 is called A′, whereas the set of all attributes 

shared by all objects from A is called B′. As a result, a formal concept is defined as a pair (A, B) for a formal 
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context (G, M, I), where A =  B′ and B =  A′ are satisfied. For a formal concept, 𝐴 is referred to as the 

concept's extent and 𝐵 as its intent. 

Definition 2. For two concepts c1 = (A1, B1), and c2 = (A2, B2), c1 is considered as a subconcept of 

c2 (equivalanty c2 is a superconcept of c1), (A1, B1) ≤  (A2, B2) ⟺  A1 ⊆  A2(or equivalently B1 ⊆  B2 ) 

The set of all formal concepts ordered in that way, indicates a complete lattice. 

The Figure 1(a) depicts the line diagram for the concept lattice which constructed from the formal 

context that shows in the upper left corner of Figure 1(a). The concept lattice could be made up by the set of 

formal concepts which constructed from the formal context and the subconcept-superconcept relation 

between them [1]. The nodes in the line diagram refer to the formal concepts where the lower nodes noted in 

the diagram represented the formal objects and formal attributes are dipcted in the higher level of the 

diagram. 

To obtain the extent of a formal concept, one must follow the descending path from the node to get 

the formal objects. In the Figure 1(a) we can notice that the formal objects for the node 𝑐2 are (URL_3, 

URL_2, URL_5). To obtain the intent of a formal concept, one must follow the ascending path from the node 

to get the formal attributes like the formal attribute “study” located at the top of the node 𝑐2. Note that 𝑐2 is a 

formal concept with extent (URL_3, URL_2, URL_5) and intent (series, study). 𝑐2 is consider as a 

subconcept of 𝑐1. 
 

2.2.  Fuzzy formal concept analysis 

FCA has recently been used in several applications where the domain representation contains 

uncertain and ambiguous information. A generalized Wille's model was one of the first studies to incorporate 

fuzziness into FCA [12]. Specifically, the use of a residuated lattice [13]–[16] to extend the original formal 

concept analysis by determining the truth degree for the assertions "object x has attribute y" in fuzzy formal 

contexts. Degrees are calculated using an L-scale of truth degrees. Normally, real values in the range [0, 1] 

are used to value L. As a result, instead of values from 0 or 1 as in the basic setting of classical FCA, the 

entries of the cross-table describing objects and attributes become degrees from L. This is known as a fuzzy 

formal concept analysis. 
 

Definition 3. A fuzzy formal context is a triple 𝐾 = (𝐺, 𝑀, 𝐼 = 𝜑(𝐺 × 𝑀)), 𝐺 is the set of objects where 𝑀 is 

the set of attributes and 𝐼 represent a fuzzy set on 𝐺 × 𝑀. Every pair (𝑔, 𝑚) ∈ 𝐼 has a membership value 

𝜇𝐼(𝑔, 𝑚) taken from the interval [0,1]. The set 𝐼 = 𝜑(𝐺 × 𝑀) = {((𝑔, 𝑚), 𝜇𝐼(𝑔, 𝑚))| ∀𝑔 ∈ 𝐺, 𝑚 ∈

𝑀, 𝜇𝐼: 𝐺 × 𝑀 → [0,1]} is a fuzzy relation 𝐺 × 𝑀. 
 

Definition 4. A fuzzy set Φ(𝑔) (fuzzy representation of g) can represent for every object 𝑔 in a fuzzy formal 

context 𝐾 as Φ(𝑔) = {(𝑚1, 𝜇𝐼(𝑚1)), (𝑚2, 𝜇𝐼(𝑚2)), … , (𝑚𝑖, 𝜇𝐼(𝑚𝑖))} where {𝑚1, 𝑚2, . . , 𝑚𝑖}is refer to the 

set of attributes in the formal context 𝐾, 𝜇𝐼(𝑚𝑖) is refer to the membership related to the attribute 𝑚𝑖.  

Figure 1(b) depicts a fuzzy model of the formal context using a cross-table. 
 

Definition 5. Let 𝐾 = (𝐺, 𝑀, 𝐼) be a fuzzy formal context with a confidence threshold 𝑇, for 𝐴 ⊆ 𝐺 we can 

define 𝐴∗ = {𝑚 ∈ 𝑀|∀𝑔 ∈ 𝐴: 𝜇𝐼(𝑔, 𝑚) ≥ 𝑇}, and for 𝐵 ⊆ 𝑀 we can define 𝐵∗ = {𝑔 ∈ 𝐺|∀𝑚 ∈
𝐵: 𝜇𝐼(𝑔, 𝑚) ≥ 𝑇}. A fuzzy formal concept of a fuzzy formal context with a threshold 𝑇, can be define as a 

pair (𝜑(𝐴), 𝐵), where 𝐴 ⊆ 𝐺 and 𝜑(𝐴) = {𝑔, 𝜇𝜑(𝐴)(𝑔)|∀𝑔 ∈ 𝐴}, 𝐵 ⊆ 𝑀, 𝐴∗ = 𝐵 and 𝐵∗ = 𝐴, where every 

object 𝑔 has a membership 𝜇𝜑(𝐴)(𝑔) defined as 𝜇𝜑(𝐴)(𝑔) = 𝑚𝑖𝑛𝑚∈𝐵  𝜇𝐼(𝑔, 𝑚). In the concept (𝜑(𝐴), 𝐵), 𝐴 

and 𝐵 are the extent and the intent of the concept respectively. 

The fuzzy formal context in Figure 1(b) has a confidence threshold 𝑇 = 0.6. Where all objects-

attributes relationships with membership values lower than 0.6 are hidden. 
 

Definition 6. Given two fuzzy formal concepts like (𝜑(𝐴1), 𝐵1) and (𝜑(𝐴2), 𝐵2) of a fuzzy formal context 

(𝐺, 𝑀, 𝐼). (𝜑(𝐴1), 𝐵1) is the subconcept of (𝜑(𝐴2), 𝐵2) denoted as (𝜑(𝐴1), 𝐵1)≤ (𝜑(𝐴2), 𝐵2) if and inly if 

𝜑(𝐴1) ⊆  𝜑(𝐴2) (𝑒𝑞𝑢𝑖𝑣𝑒𝑙𝑎𝑛𝑡𝑦 𝐵2 ⊆ 𝐵1). 

For example, in the Figure 1(b) the concept 𝑐5 is a subconcept of the concepts 𝑐2 𝑎𝑛𝑑 𝑐3, on the 

other hand the concepts 𝑐2 𝑎𝑛𝑑 𝑐3 are the superconcepts of the concept 𝑐5. 
 

Definition 7. Let 𝐾 = (𝐺, 𝑀, 𝐼) be a fuzzy formal context, within 𝐾 and a confidence threshold 𝑇, we can 

define a fuzzy concept lattice as a set of all fuzzy formal concepts of 𝐾 partially order ≤ with confidence 

threshold 𝑇. 

Definition 8: Given two formal concepts 𝐶1, 𝐶2, where 𝐶1 = (𝜑(𝐴1), 𝐵1) is a superconcept of 𝐶2 and  

𝐶2 = (𝜑(𝐴2), 𝐵2) is a subconcept of 𝐶1, the similarity between 𝐶1, 𝐶2 is described as: 
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𝑠𝑖𝑚(𝐶1, 𝐶2) = |𝜑(𝐴1)  ∩  𝜑(𝐴2)|  |𝜑(𝐴1)  ∪  𝜑(𝐴2)|⁄   

 

The operators ∩,∪ indicate the intersection and union (respectively) operations on a fuzzy set. T-

norm and t-conorm are used to compute the fuzzy intersection and union. The minimum is the most widely 

used t-norm, whereas the maximum is the most widely used t-conorm. Assume two fuzzy sets 𝐴 𝑎𝑛𝑑 𝐵 with 

membership functions 𝜇𝐴(𝑥), 𝜇𝐵(𝑥), where 𝑥 ∈ 𝑈(universe of discourse), the intersection and union 

operators are defined as 𝜇𝐴∩𝐵(𝑥) = min (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) and 𝜇𝐴∪𝐵(𝑥) = max (𝜇𝐴(𝑥), 𝜇𝐵(𝑥)).  As an 

illustration, consider the similarity of the fuzzy formal concept that calculated between the concepts  

𝐶2 = {(𝑈𝑅𝐿2, 𝑈𝑅𝐿3, 𝑈𝑅𝐿5), (𝑠𝑒𝑟𝑖𝑒𝑠, 𝑠𝑡𝑢𝑑𝑦)} and 𝐶5 = {(𝑈𝑅𝐿_2, 𝑈𝑅𝐿_5), (𝑠𝑐𝑖𝑒𝑛𝑐𝑒, 𝑠𝑡𝑢𝑑𝑦, 
𝑠𝑒𝑟𝑖𝑒𝑠)}. That given in the Figure 1(b). 

 

𝑠𝑖𝑚(𝐶2, 𝐶5) =
(|(𝑚𝑖𝑛 {0.71,0.94})+(𝑚𝑖𝑛 {0.78,0.78})|)

(|(𝑚𝑎𝑥 {0.71+0.94})+(𝑚𝑎𝑥 {0.78,0.78})+(𝑚𝑎𝑥 (0.76))|)
= 0.60  

 

Figure 1 illustrates how fuzzy formal concept analysis (FFCA) and formal concept analysis (FCA) 

are modeled differently.  The cross-table in the Figure 1(a) used in the classical FCA comprises binary values 

that describe the existence or absence of the link between objects and attributes. A cell with a value in the 

range of [0, 1] in a fuzzy setting, such as the cross-table in Figure 1(b), shows whether or not there is a link 

and offers an assessment of the strength of that association [11]. 
 

 

 
(a) (b) 

 

Figure 1. The differences in the modeling of the classical FCA and Fuzzy FCA in (a) Formal concept 

analysis, and (b) Fuzzy formal concept analysis [11] 
 

 

3. COMPARISON OF FCA APPROACHES 

3.1.  L-fuzzy concept lattice 

The authors in their paper [16] were the first to indicate that FCA can be expanded to include fuzzy 

concepts. They proceed in the following manner: Let 𝐿 = (𝐿, ≤,′ , ⨁,0,1) be a structure such that (𝐿, ≤,′ , 0,1) 

indicates a complete lattice constrained by (0 and 1),′ is refer to unary complementation operation, where ⨁ 

be a t-conorm on 𝐿 (a binary operation with the neutral element 0 that is associative, commutative, and 

associative). 

Given an 𝐿-context (𝑋, 𝑌, 𝐼), define mappings ↑ : 𝐿𝑋 → 𝐿𝑌 and ↓ : 𝐿𝑌 → 𝐿𝑋: 

 

𝐴↑(𝑦) = ⋀ (𝐴(𝑥)′  ⊕ 𝐼(𝑥, 𝑦) )𝑥∈𝑋 , (3) 

 

𝐵↓(𝑥) = ⋀ (𝐵(𝑦)′  ⊕ 𝐼(𝑥, 𝑦) )𝑦∈𝑌 , (4) 



                ISSN: 2722-3221 

Comput Sci Inf Technol, Vol. 3, No. 2, July 2022: 126-136 

130 

For 𝐴 ∈  𝐿𝑋 and 𝐵 ∈  𝐿𝑌, put ℬ(𝑋, 𝑌, 𝐼) = {⟨A, B⟩ ∈  𝐿𝑋 × 𝐿𝑌|A↑ = B,  B↓ = A } as well as describe 

a partial order  ≤  on ℬ(𝑋, 𝑌, 𝐼) by ⟨𝐴1 , 𝐵1⟩  ≤  ⟨𝐴2 , 𝐵2⟩ if and only if 𝐴1 ⊆  𝐴2 (equivalently 𝐵2 ⊆  𝐵1).  

To clarify, ′ being a classical negation (1′ = 0 𝑎𝑛𝑑 0′ = 1) and ⊕ is a classical disjunction  
(𝑎⊕b =max (a, b)). In their study [16], the authors establish some of the fundamental characteristics of ↑ 

and ↓.  and show that ℬ(𝑋, 𝑌, 𝐼) outfitted with ≤ is a complete lattice. The authors then expanded their 

strategy to incorporate what are known as implication operators [17]. Also noteworthy is that the authors 

addressed other FCA extensions in their context; see [18]. 
 

3.2.  FCA and related structures in a fuzzy setting 
Belohlavek [19] and Pollandt [20] independently proposed the basic concepts of FCA in fuzzy 

environment. They developed the following approach, which proved to be a viable method for developing 

FCA and related structures in a fuzzy environment. Let (𝑋, 𝑌, 𝐼) be an 𝐿-context, i.e., 𝐼: 𝑋 × 𝑌 → 𝐿. For a 

fuzzy set 𝐴 ∈ 𝐿𝑋 and 𝐵 ∈ 𝐿𝑌, suppose fuzzy sets 𝐴↑  ∈ 𝐿𝑌 and 𝐵↓ = 𝐿𝑋 described by 
 

𝐴↑(𝑦) = ⋀ (𝐴(𝑥)  → 𝐼(𝑥, 𝑦) )𝑥∈𝑋 , (5) 
 

𝐵↓(𝑥) = ⋀ (𝐵(𝑦)  → 𝐼(𝑥, 𝑦) )𝑦∈𝑌 . (6) 

 

Using fundamental predicate fuzzy logic rules [15], [21], it is straightforward to understand that 

𝐴↑(𝑦) is the truth degree of 𝑦 is common for all objects in 𝐴" and 𝐵↓(𝑥) is the truth degree of 𝑥 possesses all 

attributes from 𝐵." As a result, we may claim that (5) and (6) are exact generalizations of (1) and (2). Putting 

ℬ(𝑋, 𝑌, 𝐼) = {⟨A, B⟩ | 𝐴↑ = 𝐵, 𝐵↓ = 𝐴}. is refer to the set of all formal concepts ⟨A, B⟩, such that 𝐴 is refer to 

the set of all objects that share all the attributes of 𝐵(the intent), and 𝐵 is refer to the set of all attributes that 

shared by all objects of 𝐴(the extent).  ℬ(𝑋, 𝑌, 𝐼) refers to a collection of all formal concepts, where A 

denotes the collection of objects with all of 𝐵's features. known as the intent part, and 𝐵 is the collection of 

all features that all 𝐴's objects share. known as the extent part. ℬ(𝑋, 𝑌, 𝐼) is regarded as as a fuzzy concept 

lattice of the formal context (𝑋, 𝑌, 𝐼). The extent part of a formal concept and the intent of a formal concept 

(𝐴, 𝐵) are both in general fuzzy sets, as in the method of Burusco and Fuentes-Gonzalez [16]. This represents 

the reality that concepts, in general, apply to objects and attributes to varying degrees, rather than simply 0 

and 1. Putting 
 

⟨A1, B1⟩ ≤ ⟨A2, B2⟩ iff 𝐴1 ⊆  𝐴2  (iff 𝐵2 ⊆  𝐵1 ) (7) 
 

For ⟨A1, B1⟩, ⟨A2, B2⟩  ∈  ℬ(𝑋, 𝑌, 𝐼), ≤ represented the subconcept-superconcept hierarchy in ℬ(𝑋, 𝑌, 𝐼) 
 

3.3.  Fuzzy concept lattice with non-commutative conjunction 

The authors [22], defined the fuzzy concept lattice (𝐿, ⋁, ⋀,⊗, →, ⟹ ,0,1) in their method, which 

combines fuzzy logic with a non-commutative conjunction ⊗ rather than a commutative conjunction. They 

claim that removing the commutativity condition is necessary in instances when the order of the terms of the 

conjunction concerns, in order to make the theory suitable for representing temporal data. In this case, the 

Galois connection will be made up of two pairs of functions, ↑, ⇑ : 𝐿𝑋 → 𝐿𝑌  and ↓, ⇓ : 𝐿𝑌 → 𝐿𝑋, each in a 

symmetric position to his partner. The authors further demonstrate that any non-commutative fuzzy logic 

concept lattice may be understood using their framework of extended concept lattices with non-commutative 

conjunction. 
 

3.4.  One-sided fuzzy concept lattice 

In [23] and [24] separately devised the "One-sided fuzzy concept lattice" approach. The definitions 

of the authors get identical outcomes for (X, Y, I−1), I−1 ∈ LX×Y defined by I−1(x, y) = I(x, y), implying that 

the techniques are equivalent in terms of the function of objects and attributes. L = [0,1] is also used by the 

authors. The authors established two mapping operators for a fuzzy formal context (L-context), (a) f: 2X →
 LY by f(A)(y) = ⋀ I(x, y)x∈A , where A ⊑ X (objects set), f(A) ∈ L (attributes fuzzy set). And (b) h: LY →  2X 

by h(B) = {x ∈ X |each y ∈ Y: B(y) ≤ I(x, y)} for each yY:B(y)I(x,y), where B ∈ LY(attributes fuzzy set) and 

h(B) ∈ X(objects set). Then, the authors put. 
 

ℬf,h(X, Y, I) = {⟨A, B⟩  ∈  2X ×  LY| f(A) = B, h(B) = A}  
 

The authors established that ℬf,h(X, Y, I) could be fitted by the partial order ≤, as specified in (7), to 

form a complete lattice; the researchers have attributed for such a method as a "one-sided fuzzy concept 
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lattice". Be aware that concepts from ℬf,h(X, Y, I) have crisp sets for their intentions and fuzzy sets for their 

extents. 
 

3.5.  Crisply generated fuzzy concepts 

Regarding the problem of a possibly big set of formal concepts , the authors in their work [25] 

recommended just using a portion of ℬ(X, Y, I), called ℬc(X, Y, I), as opposed to using the complete 

ℬ(X, Y, I). ⟨A, B⟩  ∈ ℬ(X, Y, I) can be called crispy if there is a subset exist Bc  ⊆ Y (of attributes), such that 

A =  Bc
↓ (thus, B = Bc

↓↑). Then, the complete lattice of crispy generated fuzzy concept represented by 

ℬc(X, Y, I) = {⟨A, B⟩ ∈  ℬ(X, Y, I) |exists Bc  ⊆ Y ∶  A =  Bc
↓}. 

Consider the ways in which intentions are crisp sets and extrentions are fuzzy sets. in Yahia and 

Krajci's "One-sided fuzzy concept lattice" approach, whereas both extention part and intention part are 

generally fuzzy sets in the "Crisply Generated Fuzzy Concepts" approach. B (f,h) (X,Y,I) equipped with the 

partial order (≤) in the "One-sided fuzzy concept lattice" given in (7) is a complete lattice that is isomorphic 

to ℬc(X, Y, I) equipped with the partial order acquired from ℬ(X, Y, I). Additionally, there is an isomorphism 

for the equivalent notions, ⟨A, B⟩  ∈  ℬf,h(X, Y, I) and (C, D) ∈ ℬc(X, Y, I) such that A = C , B = D↓↑. 
 

3.6.  Generalized concept lattice 

A "generalized concept lattice" is the objective of the author's investigation in [26]. In general, the 

author suggests that three sets of truth degrees (level of belonging) be taken into consideration: LX (refer to 

the objects set), LY (attributes set), and L indicates the table entries (degree of attribute possession of objects). 

Assuming that X is objects set and Y is attributes set, the context that considered as a fuzzy context may be 

thought of as a triple (X, Y, I), where I denotes the L-relation between the objects set and the attributes set, 

i.e., I ∈  LX×Y. The author also asserts that 𝐿 is a partly ordered set and that LX and LY are complete lattices. ≤
 is used to represent all partial orders on (LX, LY, and L). In order to define arrow-operators, the author makes 

the following assumption: It is satisfied by: : LX  LY→ L. 
 

a1 ≤  a2  a1 b <  a2 b,  (8) 
 

b1 ≤  b2  a  b1  <  a  b2,  (9) 
 

If aj b ≤ c for each j ∈ J then (⋁ ajj∈J ) b ≤ c,  (10) 

 

If a  bj  ≤ c for each j ∈ J then a  (⋁ bjj∈J ) ≤ c,  (11) 

 

This is for each index set J and for all a, aj  ∈  LX, b, bj ∈  LYand c ∈  L. To put it another way, there 

are three levels of truth (L1 , L2, L,, ≤, …). If it meets (8)–(11), this structure is referred to be Krajci's 

structure. 
 

Then, Krajci moves on to mappings the arrow-operations ↑ : LX 
X →  LY

Y  and ↓: LY
Y → LX

X  by 
 

A↑(y) = ⋁{b ∈  LY| ∀ x ∈ X: A(x)b ≤ I(x, y)}  (12) 
 

B↓(x) = ⋁{a ∈  LX| ∀ y ∈ Y: aB(y) ≤ I(x, y)}  (13) 
 

The formal concepts in (X, Y, I) are defined as pairs (A, B)  ∈  LX 
X ×  LY

Y fulfilling A↑ = B, B↓ = A . 
ℬ = {⟨A, B⟩| A↑ = B, B↓ = A} (formal concepts) fitted with the partial order (≤) is a complete 

lattice (i.e., the generalized concept lattice for X, Y, I,). In [27] establishes a fundamental theorem for an 

extended concept lattice. 
 

 

4. APPLICATION DOMAINS 

In numerous disciplines, formal concept analysis has been utilized in conjunction with fuzzy logic. 

In order to detect connections between demographic data and physical activity levels, Data from 

epidemiological surveys on physical exercise were examined using FCA by the authors of [28]. Later, 

Belohlavek et al. (2007, 2011) build on the work of Sklenar et al. (2005) and Sigmund et al. (2005) by 

aggregating Participants and using fuzzy values to express the relative strength of characteristics in the 

aggregated items. Based on biological characteristics analysis, the authors provide a framework for 

identifying ecological properties of organisms in [29]. The complicated structure of the dataset is formalized 

as a fuzzy many-valued context, which is then translated to a binary context using histogram scaling. The 
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framework of the technique was based on the production and evaluation of formal concepts. The concepts 

were analyzed by a hydrobiologist, resulting in a collection of ecological features that were added to the 

initial context.  

By fusing FCA and fuzzy characteristics, the authors of in [30] presented a framework that aids 

users in their discovery of semantic web resources. Lower and higher levels make up this structure. In the 

lowest layer, fuzzy multisets are created from the semantic representations of web services. The service's 

capabilities are represented in this representation (an OWL-S document). This representation, which is an 

OWL-S document, demonstrates the functionality of the service. Fuzzy C-Means clustering is used to group 

the web services into fuzzy clusters. Services that are near matches to the input request have been found 

using fuzzy matching. Using a fuzzy formal context, archetypes and ascribed ontological conceptions that are 

present or absent have been defined at the upper layer. 

Ontology engineering is another research area that focuses on the relationships between individuals 

and classes. In [31], the authors use FCA in combined with fuzzy logic to automatically generate ontologies. 

The ontologies created will be used to support the Scholarly Semantic Web, that is used to share, reuse, and 

manage scholarly data. Quan et al. (2006) propose a "Fuzzy Ontology Generation System" for automatically 

creating an ontology that incorporates FCA and fuzzy logic. This approach is later utilized by the authors 

[32] to construct an ontology that might be used in "web-based help-desk applications." The authors of [11] 

described an ontology-based retrieval strategy that allows for data organizing and visualization while also 

offering a user-friendly navigation mechanism. To obtain conceptual frameworks from datasets and build a 

hierarchal structure representation of extracted information, it employs a fuzzy extension of Formal Concept 

Analysis theory. This approach contributes significantly to knowledge handling. It offers hierarchy 

exploration and query processing after performing knowledge extraction and structuring as well as ontology-

driven discovery. The outcomes of the implementation are concentrated on hierarchical facet-based navigation. 

Many papers have recommended combining fuzzy logic with formal concept analysis for 

information retrieval. In a citation database-based document retrieval system., the authors employed FCA 

with fuzzy features for conceptual grouping, according to their work in [33]. Using fuzzy logic and formal 

concept analysis, a fuzzy concept lattice is constructed on which "a fuzzy conceptual clustering approach" is 

conducted. the process of getting documentation will thereafter be accomplished through the use of fuzzy 

queries. The authors established a methodology for developing an ontology using formal concept analysis 

and fuzzy features in [34]. The initial collection of documents is broken into smaller groups of similar texts 

using the "Growing Hierarchical Self Organizing Map clustering method." "Agglomerative clustering" is 

used to combine the models into a hierarchy of concept lattices. To deal with empty responses for the queries 

based fuzzy, the authors employed formal concept analysis with fuzzy features, according to the work in 

[35]. Fuzzy querying processing based on Galois lattices helps discovering reasons for empty results by 

displaying the subqueries that are accountable for the mistake. In [36] proposed a query expansion technique 

based on FCA and fuzzy attributes. 

Several researchers have recently demonstrated the use of formal concept analysis in reliability 

engineering. In [37], the authors' goal is to present the fundamentals of FCA and how it can be applied to 

reliability engineering problems in their paper. To accomplish this, four examples in reliability engineering 

were chosen for analysis from the literature as well as the authors' personal experience. The first example 

explains the FCA approach based on cut-sets in network-modeled systems. The second example analyzes 

which protection strategy could be used to prevent various types of attack scenarios in a given network  

using notions inferred from knowledge space theory. The last two examples show how binary formal 

contexts can be extended to analyse: i) failure events caused by different reasons (granularity levels); and  

ii) the significance of nodes in an electric power system based on several measures of significance (attributes 

with multiple values). 

Another research direction to use FCA in crime prediction. In this paper [38] the authors provided a 

brief background on crime pattern analysis as well as available methods for resolving it. Simultaneously, 

some of the intriguing methods are empirically analyzed based on various parameters in order to understand 

their appropriate applicability. They also concentrated on the uncertainty analysis that exists in crime data 

sets with fuzzy attributes. 
 

 

5. CURRENT ISSUES AND RESEARCH DIRECTIONS  

FCA is a useful formalism for representing, extracting, and analyzing whatever information system, 

but it has a few issues that need to be settled. In general, contexts are large, complex, and contain a huge 

amount of redundant information. As a result, one of the main issues identified in practical FCA applications 

is that the computational cost of processing the information system with FCA is high and visualizing the 

lattice structure is difficult [39]. Because of FCA's scalability, this complexity issue arises. Considering that 
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counting the formal concepts in the input context is #P-complete [40], and that the number of formal 

concepts in the input context might be exponential, all concepts can be constructed with polynomial latency. 

The sizes of implication bases, even the smallest implication base, can be exponential, with the size of the 

stem base being #P-hard [41] to calculate. 

A major challenge for FCA practical applications is the visualization of formal concepts in a 

hierarchy structure in the final outcome (concept lattice structure). One of the main issues with this technique 

is how large the concept lattice is when it is formed from a large formal context. The vast context concept 

lattice becomes difficult and unworkable. As a result, managing a large formal context and reducing the size 

of the concept lattice are highlighted as practical challenges in formal concept analysis applications. In 

general, procuring a concept lattice of sufficient complexity and size is one of the most fundamental 

challenges in formal concept analysis [39]. 

The literature describes a variety of techniques for controlling the complexity and size of formal 

contexts, formal concepts, concept lattices, and implications. To enhancing FCA scalability there are popular 

research techniques include iceberg concept lattices [10], matrix decompositions [42], conceptual scaling for 

many-valued contexts [43], the reduction of the concept lattices based on rough set theory [44], and other. In 

[39], the authors divided concept lattice reduction techniques into three categories. The first category of 

reduction techniques removes redundant information from the context, that means an object 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 

(set of attributes) or incidence 𝑖 ∈ 𝐼 (𝐼 is a binary relation (𝐼 ⊆ 𝐺 × 𝑀)) can be considered as redundant 

knowledge in the formal context if removing or transforming it results in a lattice isomorphic to the orginal. 

The techniques for removing redundant information aim to create a concept lattice that is isomorphic to the 

original. The authors in their paper [45] used the same teqnique of reduction on fuzzy formal context. This 

category of techniques is useful when there is a lot of redundant knowledge in the formal context. 
The second category of the reduction techniques is simplification techniques. The concept lattice 

contains all relationships between concepts, including those between concepts that are very similar. For 

instance, the corresponding link is shown using formal concepts that differ only by a single characteristic. 

The lattice can be made simpler by omitting the property that separates these concepts in these situations if it 

is no longer relevant (as judged by some conditions). in order to emphasize only the important knowledge. 

This category of techniques is useful for identifying key aspects in formal context or concept lattices. 

The third category of the reductions techniques is selection techniques. Several concepts, especially 

in a big concept lattice, may be deemed irrelevant in a given application. The "relevance" of a concept could 

be related to its cardinality, intention or extension, the relationship between some attributes, and so on. 

Selection techniques are those that select objects, attributes or concepts based on some relevance criterion. 

The authors [46] made a significant contribution in this direction by connecting frequent items and formal 

concepts. The terms "support" and "frequent sets" are discribed as: Let 𝐵 ⊆ 𝑀, where M is a set of attributes 

and 𝑆𝑢𝑝(𝐵, 𝐺), is the counts of objects in 𝐺 that contains all the attributes of𝐵. We can say that a set of 

attributes 𝐵 ⊆ 𝑀 is frequent iff 𝑆𝑢𝑝(𝐵, 𝐺) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝(minimal support previously set). Iceberg concept 

lattices are concept lattices created by limiting the item sets to those that are frequently used. In this instance, 

just the most common formal concepts are employed, leading to a partial lattice. This occurs as a result of the 

support for the intent being a diminishing function. In other words, the gevin a two formal concept 

(𝐴1, 𝐵1), (𝐴2, 𝐵2), where (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2), sup (𝐵1, 𝐺) ≤ sup (𝐵2, 𝐺), where G is the sets of objects [10] 

describes how to create iceberg concept lattices using the Titanic method. The authors also show how to use 

these lattices for a number of tasks, such as large-scale database analysis, mining association rule extraction, 

implications extraction, and implications visualization. Following that, we summarize some of the advances 

in the literature on scalability issues in Table 1 (see in appendix) and briefly describe each work's 

contribution based on the categories that we mentioned. 
 

 

6. CONCLUSION 

In this work we presented an overview on the foundations of fuzzy formal concept analysis and its 

applications. In the literature, formal concept analysis with fuzzy attributes has gotten a lot of attention. The 

main focus of the researchers was on developing methods for extended FCA in a fuzzy environment like 

crisply generated, fuzzy concepts, generalized concept lattice, one-sided fuzzy concept lattice, and employing 

fuzzy formal concept analysis in domains such as reliability engineering, crime prediction, KDD, IR, and 

ontology engineering, An major challenge for FCA practical applications is the display of formal concepts in 

hierarchy structure in the concept lattice structure. One of the major issues in this process is the the large 

structure of the concept lattice (big line diagram) constructed from a large formal context. The concept lattice 

constructed from the big context becoming difficult and unworkable. Therefore, it is emphasized as a real 

difficulty in FCA applications to deal with a big formal context and minimize the size of the concept lattice. 

To deal with such problems several techniques to control the complexity and size of a concept lattice have 
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been presented in the literature. In this work we have reviewed some of the recent articles on the reduction 

techniques trying to summarize the contributions. 
 

 

APPENDIX 
 

Table 1. Contributions on formal concept analysis (FCA) reduction techniques 
Papers Work's contribution Category 

[1] By removing reducible objects and attributes, the authors were able to obtain a clarified context, and the 

resulting concept lattice maintains the isomorphism with the original. 

Redundant information 

removal 

[47] The authors demonstrated how to factorize concept lattices based on concept similarity. It's also demonstrated 

how to speed up the computation of similarity relations. They defined and examined the similarity relations at 

three levels: similarity of objects and attributes, similarity of concepts, and similarity of concept lattices. 

Redundant information 

removal 

[48] This paper investigates the granular structure of concept lattices and how it can be used to reduce knowledge in 

formal concept analysis. The properties of information granules are first discussed in a formal context. In the 

formal context, the concepts of a granular consistent set and granular reducts are introduced. 

Redundant information 

removal 

[49] The attributes in a decision formal context have been reduced using a homomorphism consistent set from the 

concept lattice. 

Redundant information 

removal 

[50] The author proposes a framework for knowledge reduction from a decision formal context that employs rule 

acquisition to discover a new set of non-redundant decision rules. 

Redundant information 

removal 

[51] Ciobanu later used the reduction described in [47] to introduce a new reduction in the property-oriented and 

object-oriented concept lattice frameworks. 

Redundant information 

removal 

[52] The authors in their article covered two important research topics in FCA: attribute reduction and size reduction 

in concept lattices. The authors present a procedure that uses an irreducible -cut concept lattice to 

simultaneously reduce attributes and concept lattice size. 

Redundant information 

removal 

[53] JBOS (Junction based on object similarity) uses background knowledge to replace similar objects with 

representative elements that are similar to a certain degree. 

Simplification 

[54] Using fuzzy k means (FKM) clustering, the size of the concept lattices was reduced. The context matrix is 

reduced, and quotient lattices are obtained using FKM Clustering-derived equivalence relations. Each element is 

associated with a set of membership levels, and each record can belong to more than one cluster. 

Simplification 

 The authors extended previous work on the correspondence of block relations of formal contexts and complete 

tolerances on concept lattices to a fuzzy setting and provided an example of how to use block relations to reduce 

a concept lattice. 

Simplification 

[55] The authors investigated concept lattices in uncertain environments. They investigated the fuzziness in a 

multivalued context, which is then transformed into fuzzy formal contexts and fuzzy formal concepts. By 

simplifying the corresponding fuzzy concept lattice structure, they were able to reduce the number of fuzzy 

formal concepts. 

Simplification 

[56] Based on their characteristics, fuzzy formal contexts are reduced using attribute reduction. The term "one-sided 

fuzzy concept" is used for the first time. The attributes are divided into three categories: core attributes, 

relatively important attributes, and unimportant attributes. By virtue of attribute characteristics, an attribute 

reduction method is presented. 

Simplification 

[57] They've implemented a mechanism to reduce attributes in fuzzy FCA, considering the reduction procedure and 

tolerance relations introduced in RST. This new method for reducing attributes reduces the original concept 

lattice significantly. The most important feature of this method is that it partially preserves the structure of the 

original concept lattice when using this new mechanism, i.e., no new join-irreducible elements appear after the 

reduction procedure. 

Simplification 

[10] The authors made a significant contribution by connecting frequent items and formal concepts as described in 

[57]. 

Selection 

[58] The authors introduced a type of concept lattice, which are like iceberg concept lattices. Some class restraints 

are built with attributes in a formal context. The authors named the resulting concept lattice alpha concept 

lattice. An iceberg concept lattice is formed by an unrestricted lattice, which contains only frequent formal 

concepts. 

Selection 

[59] The choice of formal concepts in the proposed method is based on the concept of distance or similarity. In the 

process of selecting important concepts, the concepts of equivalence classes and object or attribute similarity are 

used. 

Selection 

[4] In this work, each attribute is given a weight to demonstrate its relevance, and thereafter formal concepts that 

are relevant are chosen. Equal weights are assigned to attributes derived from multivalued attributes to facilitate 

the application of weights. The sum of the weights of a formal concept's attributes intention divided by the 

cardinality of its intention determines its importance. 

Selection 

[45] The authors introduce the Titanic algorithm for generating iceberg concept lattices and demonstrate the utility of 

these lattices in a variety of applications, including large-scale database analysis, extraction of implications, 

visualization of implications and mining association rules. 

Selection 

[60] For fuzzy formal concepts, the authors presented a similarity metric. In order to choose a subset of formal 

concepts that are related to one another, the similarity measure is utilized. This subset of formal concepts may 

be much smaller than the initial set of formal concepts. A measurement of similarities between formal concept 

extensions is defined as follows. Given two forma concepts (𝐴1, 𝐵1), (𝐴2, 𝐵2), the similarity between the 

extentions 𝐴1and 𝐴2 given by 𝑆𝑖𝑚(𝐴1, 𝐴2)=1- |𝐴1
′ ∩ 𝐴2

′ |∕ |𝐴1
′ ∪ 𝐴2

′ |.| 

Selection 

[61] The authors focused on using entropy to reduce the number of formal concepts in formal concept analysis with 

fuzzy attributes. Furthermore, at a given granulation of the entropy-based attribute intent weight, the number of 

fuzzy formal concepts is reduced. 

Selection 

 

 

REFERENCES 
[1] B. Ganter and R. Wille, “Formal Concept Analysis : Mathematical Foundations Formal Concept Analysis,” Springer, 1997, doi: 

10.1007/978-3-642-59830-2. 

[2] B. A. Davey and H. A. Priestley, “Introduction to Lattices and Order,” Introduction to Lattices and Order, 2002, doi: 

10.1017/cbo9780511809088. 
[3] L. A. Zadeh, Information and control, vol. 8, no. 3. 1965. 

[4] R. Belohlavek and J. Macko, “Selecting important concepts using weights,” Lecture Notes in Computer Science (including 



Comput Sci Inf Technol  ISSN: 2722-3221  

 

 Fuzzy formal concept analysis: approaches, applications and issues (Mohammed Alwersh) 

135 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6628 LNAI, pp. 65–80, 2011, doi: 
10.1007/978-3-642-20514-9_7. 

[5] M. Klimushkin, S. Obiedkov, and C. Roth, “Approaches to the selection of relevant concepts in the case of noisy data,” Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 

5986 LNAI, pp. 255–266, 2010, doi: 10.1007/978-3-642-11928-6_18. 

[6] M. D. Rice and M. Siff, “Clusters, concepts, and pseudo-metrics,” Electronic Notes in Theoretical Computer Science, vol. 40, pp. 
323–346, 2001, doi: 10.1016/S1571-0661(05)80060-X. 

[7] J. Medina, “Relating attribute reduction in formal, object-oriented and property-oriented concept lattices,” Computers and 

Mathematics with Applications, vol. 64, no. 6, pp. 1992–2002, 2012, doi: 10.1016/j.camwa.2012.03.087. 

[8] H. Wang and W. X. Zhang, “Approaches to knowledge reduction in generalized consistent decision formal context,” 

Mathematical and Computer Modelling, vol. 48, no. 11–12, pp. 1677–1684, 2008, doi: 10.1016/j.mcm.2008.06.007. 
[9] R. Belohlavek and V. Vychodil, “Formal concept analysis with background knowledge: Attribute priorities,” IEEE Transactions 

on Systems, Man and Cybernetics Part C: Applications and Reviews, vol. 39, no. 4, pp. 399–409, 2009, doi: 

10.1109/TSMCC.2008.2012168. 

[10] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal, “Computing iceberg concept lattices with TITANIC,” Data and 

Knowledge Engineering, vol. 42, no. 2, pp. 189–222, 2002, doi: 10.1016/S0169-023X(02)00057-5. 
[11] C. De Maio, G. Fenza, V. Loia, and S. Senatore, “Hierarchical web resources retrieval by exploiting fuzzy formal concept 

analysis,” Information Processing and Management, vol. 48, no. 3, pp. 399–418, 2012, doi: 10.1016/j.ipm.2011.04.003. 

[12] A. Burusco and R. Fuentes-González, “Construction of the L-fuzzy concept lattice,” Fuzzy Sets and Systems, vol. 97, no. 1, pp. 

109–114, 1998, doi: 10.1016/S0165-0114(96)00318-1. 

[13] R. Bělohlávek, “Lattices of fixed points of fuzzy Galois connections,” Mathematical Logic Quarterly: Mathematical Logic 
Quarterly, vol. 47, no. 1, pp. 111–116, 2001, doi: 10.1002/1521-3870. 

[14] R. Bělohlávek, “Fuzzy Galois connections,” Mathematical Logic Quarterly, vol. 45, no. 4, pp. 497–504, 1999, doi: 

10.1002/malq.19990450408. 

[15] C. J. H. Mann, “Fuzzy Relational Systems: Foundations and Principles,” Kybernetes, vol. 32, no. 9/10, 2003, doi: 

10.1108/k.2003.06732iae.005. 
[16]  a. B. Juandeaburre and R. Fuentes-González, “The study of the L-fuzzy concept lattice,” Mathware and Soft Computing, vol. 3, 

no. 3, pp. 209–218, 1994. 

[17] A. Burusco and R. Fuentes-González, “Concept lattices defined from implication operators,” Fuzzy Sets and Systems, vol. 114, 

no. 3, pp. 431–436, 2000, doi: 10.1016/S0165-0114(98)00182-1. 
[18] A. Burusco and R. Fuentes-Gonzalez, “Contexts with multiple weighted values,” International Journal of Uncertainty, Fuzziness 

and Knowlege-Based Systems, vol. 9, no. 3, pp. 355–368, 2001, doi: 10.1142/S0218488501000843. 

[19] R. Belohlavek, “Lattices generated by binary fuzzy relations (extended abstract),” Abstracts of the Fourth International 

Conference on Fuzzy Sets Theory and Its Applications, vol. 11, p. 11, 1998. 

[20] S. Pollandt, “Fuzzy-Kontexte,” Fuzzy-Begriffe, pp. 21–49, 1997, doi: 10.1007/978-3-642-60460-7_3. 
[21] P. Hájek, “Metamathematics of fuzzy logic,” Springer Dordrecht, 1998, doi: 10.1007/978-94-011-5300-3. 

[22] G. Georgescu and A. Popescu, “Concept lattices and similarity in non-commutative fuzzy logic,” Fundamenta Informaticae, vol. 

53, no. 1, pp. 23–54, 2002. 

[23] S. Ben Yahia and A. Jaoua, “Discovering Knowledge from Fuzzy Concept Lattice,” pp. 167–190, 2001, doi: 10.1007/978-3-7908-

1825-3_7. 
[24] S. Krajči, “Cluster based efficient generation of fuzzy concepts,” Neural Network World, vol. 13, no. 5, pp. 521–530, 2003. 

[25] R. Bělohlávek, V. Sklenář, and J. Zacpal, “Crisply generated fuzzy concepts,” Lecture Notes in Artificial Intelligence (Subseries 

of Lecture Notes in Computer Science), vol. 3403, pp. 269–284, 2005, doi: 10.1007/978-3-540-32262-7_19. 

[26] S. Krajči, “A generalized concept lattice,” Logic Journal of the IGPL, vol. 13, no. 5, pp. 543–550, 2005, doi: 

10.1093/jigpal/jzi045. 
[27] S. Krajči, “The basic theorem on generalized concept lattice,” CEUR Workshop Proceedings, vol. 110, pp. 25–33, 2004. 

[28] V. Sklenář, J. Zacpal, and E. Sigmund, “Evaluation of IPAQ questionnaire by FCA,” CEUR Workshop Proceedings, vol. 162, pp. 

60–69, 2005. 

[29] A. Bertaux, F. Le Ber, A. Braud, and M. Trémolières, “Identifying ecological traits: A concrete FCA-based approach,” Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 
5548 LNAI, pp. 224–236, 2009, doi: 10.1007/978-3-642-01815-2_17. 

[30] G. Fenza and S. Senatore, “Friendly web services selection exploiting fuzzy formal concept analysis,” Soft Computing, vol. 14, 

no. 8, pp. 811–819, 2010, doi: 10.1007/s00500-009-0469-2. 

[31] T. T. Quan, S. C. Hui, A. C. M. Fong, and T. H. Cao, “Automatic generation of ontology for scholarly semantic web,” Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 
3298, pp. 726–740, 2004, doi: 10.1007/978-3-540-30475-3_50. 

[32] T. T. Quan, S. C. Hui, and A. C. M. Fong, “Automatic fuzzy ontology generation for semantic help-desk support,” IEEE 

Transactions on Industrial Informatics, vol. 2, no. 3, pp. 155–163, 2006, doi: 10.1109/TII.2006.873363. 

[33] T. T. Quan, S. C. Hui, and T. H. Cao, “A fuzzy FCA-based approach for citation-based document retrieval,” 2004 IEEE 

Conference on Cybernetics and Intelligent Systems, pp. 577–582, 2004, doi: 10.1109/iccis.2004.1460480. 
[34] P. Butka, M. Sarnovsky, and P. Bednar, “One approach to combination of FCA-based local conceptual models for text analysis - 

Grid-based approach,” SAMI 2008 6th International Symposium on Applied Machine Intelligence and Informatics - Proceedings, 

pp. 131–135, 2008, doi: 10.1109/SAMI.2008.4469150. 

[35] H. Chettaoui, N. Hachani, M. A. Ben Hassine, and H. Ounelli, “Using FCA to answer fuzzy queries in cooperative systems,” 

Proceedings - 5th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2008, vol. 3, pp. 14–20, 2008, 
doi: 10.1109/FSKD.2008.327. 

[36] B. Zhang, H. M. Li, Y. J. Du, and Y. T. Wang, “Query expansion based on topics,” Proceedings - 5th International Conference 

on Fuzzy Systems and Knowledge Discovery, FSKD 2008, vol. 2, pp. 610–614, 2008, doi: 10.1109/FSKD.2008.464. 

[37] C. M. Rocco, E. Hernandez-Perdomo, and J. Mun, “Introduction to formal concept analysis and its applications in reliability 

engineering,” Reliability Engineering and System Safety, vol. 202, 2020, doi: 10.1016/j.ress.2020.107002. 
[38] P. Kapoor, P. K. Singh, and A. K. Cherukuri, “Crime data set analysis using formal concept analysis (fca): A survey,” Lecture 

Notes in Electrical Engineering, vol. 612, pp. 15–31, 2020, doi: 10.1007/978-981-15-0372-6_2. 

[39] S. M. Dias and N. J. Vieira, “Concept lattices reduction: Definition, analysis and classification,” Expert Systems with 

Applications, vol. 42, no. 20, pp. 7084–7097, 2015, doi: 10.1016/j.eswa.2015.04.044. 

[40] S. O. Kuznetsov, “On Computing the Size of a Lattice and Related Decision Problems,” Order, vol. 18, no. 4, pp. 313–321, 2001, 



                ISSN: 2722-3221 

Comput Sci Inf Technol, Vol. 3, No. 2, July 2022: 126-136 

136 

doi: 10.1023/A:1013970520933. 
[41] S. O. Kuznetsov, “On the intractability of computing the duquenne-guigues base,” Journal of Universal Computer Science, vol. 

10, no. 8, pp. 927–933, 2004. 

[42] V. Snasel, P. Gajdos, H. M. D. Abdulla, and M. Polovincak, “Using matrix decompositions in formal concept analysis,” CEUR 

Workshop Proceedings, vol. 252, pp. 121–128, 2007. 

[43] N. Messai, M. D. Devignes, A. Napoli, and M. Smail-Tabbone, “Many-valued concept lattices for conceptual clustering and 
information retrieval,” Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 127–131, 2008, doi: 10.3233/978-1-

58603-891-5-127. 

[44] M. Liu, M. Shao, W. Zhang, and C. Wu, “Reduction method for concept lattices based on rough set theory and its application,” 

Computers and Mathematics with Applications, vol. 53, no. 9, pp. 1390–1410, 2007, doi: 10.1016/j.camwa.2006.03.040. 

[45] D. Pei, M. Z. Li, and J. S. Mi, “Attribute reduction in fuzzy decision formal contexts,” Proceedings - International Conference on 
Machine Learning and Cybernetics, vol. 1, pp. 204–208, 2011, doi: 10.1109/ICMLC.2011.6016665. 

[46] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets for association rules,” Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 1540, 

pp. 398–416, 1998, doi: 10.1007/3-540-49257-7_25. 

[47] R. Bělohlávek, “Similarity relations in concept lattices,” Journal of Logic and Computation, vol. 10, no. 6, pp. 823–845, 2000, 
doi: 10.1093/logcom/10.6.823. 

[48] W. Z. Wu, Y. Leung, and J. S. Mi, “Granular computing and knowledge reduction in formal contexts,” IEEE Transactions on 

Knowledge and Data Engineering, vol. 21, no. 10, pp. 1461–1474, 2009, doi: 10.1109/TKDE.2008.223. 

[49] D. Pei and J. S. Mi, “Attribute reduction in decision formal context based on homomorphism,” International Journal of Machine 

Learning and Cybernetics, vol. 2, no. 4, pp. 289–293, 2011, doi: 10.1007/s13042-011-0034-z. 
[50] J. Li, C. Mei, C. A. Kumar, and X. Zhang, “On rule acquisition in decision formal contexts,” International Journal of Machine 

Learning and Cybernetics, vol. 4, no. 6, pp. 721–731, 2013, doi: 10.1007/s13042-013-0150-z. 

[51] G. Ciobanu and C. Vəideanu, “Similarity relations in fuzzy attribute-oriented concept lattices,” Fuzzy Sets and Systems, vol. 275, 

pp. 88–109, 2015, doi: 10.1016/j.fss.2014.12.011. 

[52] M. E. Cornejo, J. Medina, and E. Ramírez-Poussa, “Attribute and size reduction mechanisms in multi-adjoint concept lattices,” 
Journal of Computational and Applied Mathematics, vol. 318, pp. 388–402, 2017, doi: 10.1016/j.cam.2016.07.012. 

[53] S. M. Dias and N. J. Vieira, “Applying the JBOS reduction method for relevant knowledge extraction,” Expert Systems with 

Applications, vol. 40, no. 5, pp. 1880–1887, 2013, doi: 10.1016/j.eswa.2012.10.010. 

[54] C. Aswani Kumar and S. Srinivas, “Concept lattice reduction using fuzzy K-Means clustering,” Expert Systems with Applications, 
vol. 37, no. 3, pp. 2696–2704, 2010, doi: 10.1016/j.eswa.2009.09.026. 

[55] P. K. Singh, C. Aswani Kumar, and J. Li, “Knowledge representation using interval-valued fuzzy formal concept lattice,” Soft 

Computing, vol. 20, no. 4, pp. 1485–1502, 2016, doi: 10.1007/s00500-015-1600-1. 

[56] J. Li, C. Huang, J. Qi, Y. Qian, and W. Liu, “Three-way cognitive concept learning via multi-granularity,” Information Sciences, 

vol. 378, pp. 244–263, 2017, doi: 10.1016/j.ins.2016.04.051. 
[57] M. J. Benítez-Caballero, J. Medina, E. Ramírez-Poussa, and D. Ślȩzak, “Rough-set-driven approach for attribute reduction in 

fuzzy formal concept analysis,” Fuzzy Sets and Systems, vol. 391, pp. 117–138, 2020, doi: 10.1016/j.fss.2019.11.009. 

[58] H. Soldano, V. Ventos, M. Champesme, and D. Forge, “Incremental construction of alpha lattices and association rules,” Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 

6277 LNAI, no. PART 2, pp. 351–360, 2010, doi: 10.1007/978-3-642-15390-7_36. 
[59] V. Codocedo, C. Taramasco, and H. Astudillo, “Cheating to achieve Formal Concept analysis over a large formal context,” CEUR 

Workshop Proceedings, vol. 959, pp. 349–362, 2011. 

[60] A. Formica, “Similarity reasoning for the semantic web based on fuzzy concept lattices: An informal approach,” Information 

Systems Frontiers, vol. 15, no. 3, pp. 511–520, 2013, doi: 10.1007/s10796-011-9340-y. 

[61] P. K. Singh, A. K. Cherukuri, and J. Li, “Concepts reduction in formal concept analysis with fuzzy setting using Shannon 
entropy,” International Journal of Machine Learning and Cybernetics, vol. 8, no. 1, pp. 179–189, 2017, doi: 10.1007/s13042-

014-0313-6. 

 

 

BIOGRAPHIES OF AUTHORS 
 

 

Alwersh Mohammed     received the B.Sc. degree in Computer Science in 2008 

from the University of Al-Qaddissiyah, Iraq, and in 2014 the M.Sc. degree in Information 

Technology from Belarusian state university of informatics and radioelectronics (BSUIR), 

Minsk-Belarus. He is a PhD student at the University of Miskolc, Miskolc Hungary, since 

2020. The Topic title is “Attribute Set Reduction of Categorical Attributes for Machine 

Learning and FCA Methods”. He can be contacted at email: 

alwersh.mohammed.ali.daash@student.uni-miskolc.hu. 

  

 

Prof. Dr. László Kovács     Head of the Department of the Institute of Informatics 

of the University of Miskolc. His main research interests are optimization of neural network-

based prediction methods, theory of concept lattices, NLP and automatic question generation 

procedures, applications of ontology in knowledge engineering. He is an author of more than 

90 journal publications in the related research fields. He is an active member of the editorial 

board at 7 international journals. He can be contacted at email: kovacs@iit.uni-miskolc.hu. 

 

https://orcid.org/0000-0001-6727-5576
https://www.researchgate.net/profile/Mohammed-Alwersh
https://orcid.org/0000-0003-2703-7228
https://www.researchgate.net/profile/Laszlo-Kovacs-14
https://www.scopus.com/authid/detail.uri?authorId=7201471183

